Analysis of Repeated Measures Designs not Involving Time

Today's Class:

- > The experimental psychologist's analytic toolbox
- > Examples of crossed random effects models:
 - 1: Psycholinguistic study (subjects by words)—see article
 - 2: Visual search study (subjects by scenes)—chapter 15
 - 3: Eye tracking study (subjects by scenes)—see article
- > Example of nested model:
 - 4: Tracking and talking (speech within subjects)—see article

Analytic Toolbox of the Experimental Psychologist

- Our friend, analysis of variance (ANOVA)
 - Between-group (aka between-subject, independent IV)
 - > Within-group (aka within-subject, dependent, repeated measures IV)
 - Split-plot (aka mixed design of between- and within-group IVs)
- Expandable to include:
 - > multiple IVs (factorial ANOVA)
 - > main effects of continuous covariates (ANCOVA)
 - > multiple outcomes (MANOVA/MANCOVA)

ANOVA works well when...

- Experimental stimuli are *controlled* and *exchangeable*
 - > Controlled \rightarrow Constructed, not sampled from a population
 - > Exchangeable \rightarrow Stimuli vary only in dimensions of interest
 - > ...What to do with non-exchangeable stimuli (e.g., words, scenes)?
- Experimental manipulations create *discrete conditions*
 - > e.g., set size of 3 vs. 6 vs. 9 items
 - > e.g., response compatible vs. incompatible distractors
 - > ...What to do with *continuous* item predictors (e.g., time, salience)?
- One has complete data
 - > e.g., if outcome is RT and accuracy is near ceiling
 - > e.g., if responses are missing for no systematic reason
 - > ...What if data are not missing completely at random (e.g., inaccuracy)?

Example 1: Overview of Psycholinguistic Study Design

- Word Recognition Tasks (e.g., Lexical Decision)
 - Word lists are constructed based on targeted dimensions while controlling for other relevant dimensions
 - Outcome = RT to decide if the stimulus is a word or non-word (accuracy is usually near ceiling)
- Tests of effects of experimental treatment are typically conducted with the person as the unit of analysis...
 - > Average the responses over words within conditions
 - Contentious fights with reviewers about adequacy of experimental control when using real words as stimuli
 - Long history of debate as to how words as experimental stimuli should be analyzed... F_1 ANOVA or F_2 ANOVA (or both)?
 - F₁ only creates a "Language-as-Fixed-Effects Fallacy" (Clark, 1973)

ANOVAs on Summary Data

Original Data per Subject

	B1	B2			
A1	Trial 001 Trial 002	Trial 101 Trial102			
	Trial 100	Trial 200			
Δ2	Trial 201 Trial 202	Trial 301 Trial302			
7.2	 Trial 300	Trial 400			
\mathbf{I}					
Subject Summary Data					

	B1	B2
A1	Mean (A1, B1)	Mean (A1, B2)
A2	Mean (A2, B1)	Mean (A2, B2)

"F₁" Repeated Measures ANOVA on *N* **subjects:** $RT_{cs} = \gamma_0 + \gamma_1 A_c + \gamma_2 B_c + \gamma_3 A_c B_c + U_{0s} + e_{cs}$

"F₂" Between-Groups ANOVA on *T* trials: $RT_t = \gamma_0 + \gamma_1 A_t + \gamma_2 B_t + \gamma_3 A_t B_t + e_t$

Trial Summary Data

	B1
A1, B1	Trial 001 = Mean(Subject 1, Subject 2, Subject N) Trial 002 = Mean(Subject 1, Subject 2, Subject N) Trial 100
A1, B2	Trial 101 = Mean(Subject 1, Subject 2, Subject N) Trial 102 = Mean(Subject 1, Subject 2, Subject N) Trial 200
A2, B1	Trial 201 = Mean(Subject 1, Subject 2, Subject N) Trial 202 = Mean(Subject 1, Subject 2, Subject N) Trial 300
A2, B2	Trial 301 = Mean(Subject 1, Subject 2, Subject N) Trial 302 = Mean(Subject 1, Subject 2, Subject N) Trial 400

Choosing Amongst ANOVA Models

- F₁ RM ANOVA on **subject** summary data:
 - > Assumes trials are fixed—within-condition *trial* variability is gone
- F₂ ANOVA on **trial** summary data:
 - > Assumes persons are fixed—within-trial *subject* variability is gone
- Proposed ANOVA-based resolutions:
 - > $F' \rightarrow$ quasi-F test that treats both trials and subjects as random (Clark, 1973), but requires complete data (least squares)
 - > Min F' → lower-bound of F' derived from F1 and F2 results, which does not require complete data, but is (too) conservative
 - F₁ x F₂ criterion → effects are only "real" if they are significant in both F₁ and F₂ models (aka, death knell for psycholinguists)
 - > But neither model is complete (two wrongs don't make a right)...

Sources of Variance (Clark, 1973) t = #conditions, i = #items, s = #subjects

Label		DF	Expected Mean Square		
Т	Treatments (t)	t-1	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + i\sigma_{TxS}^{2} + \dots + s\sigma_{I}^{2} + is\sigma_{T}^{2}$		
IwT	Items (i) within Treatments	t(i-1)	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + \underline{\qquad} + \underline{\qquad} + \mathbf{s}\sigma_{I}^{2} + \underline{\qquad}$		
S	Subjects (s)	s-1	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + \underline{\qquad} + \mathbf{t}\sigma_{S}^{2} + \underline{\qquad} + \underline{\qquad}$		
ΤxS	Treatments by Subjects	(t-1)(s-1)	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + i\sigma_{TxS}^{2} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$		
SxIwT	Subjects by Items within Treatments	t(i-1)(s-1)	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + \ = = \ = = = = = = = = = = = =$		

Effect of Treatment via F₁ANOVA

T numerator should differ from TxS denominator by 1 term

Label		DF	Expected Mean Square
Т	Treatments (t)	t-1	$\sigma_e^2 + \sigma_{SxI}^2 + i\sigma_{TxS}^2 + \dots + s\sigma_I^2 + is\sigma_T^2$
IwT	Items (i) within Treatments	t(i-1)	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + \underline{\qquad} + \underline{\qquad} + \mathbf{s}\sigma_{I}^{2} + \underline{\qquad}$
S	Subjects (s)	s-1	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + \underline{\qquad} + \mathbf{t}\sigma_{S}^{2} + \underline{\qquad} + \underline{\qquad}$
T x S	Treatments by Subjects	(t-1)(s-1)	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + i\sigma_{TxS}^{2} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$
SxIwT	Subjects by Items within Treatments	t(i-1)(s-1)	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + ___ + ___ + ___ + ___$

Effect of Treatment via F₂ ANOVA

T numerator should differ from IxT denominator by 1 term

Label		DF	Expected Mean Square		
Т	Treatments (t)	t-1	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + \frac{i\sigma_{TxS}^{2}}{i\sigma_{TxS}} + \underline{\qquad} + s\sigma_{I}^{2} + \frac{is\sigma_{T}^{2}}{is\sigma_{T}^{2}}$		
IwT	Items (i) within Treatments	t(i-1)	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + \underline{\qquad} + \underline{\qquad} + \mathbf{s}\sigma_{I}^{2} + \underline{\qquad}$		
S	Subjects (s)	s-1	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + \underline{\qquad} + \mathbf{t}\sigma_{S}^{2} + \underline{\qquad} + \underline{\qquad}$		
T x S	Treatments by Subjects	(t-1)(s-1)	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + i\sigma_{TxS}^{2} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$		
SxIwT	Subjects by Items within Treatments	t(i-1)(s-1)	$\sigma_{e}^{2} + \sigma_{SxI}^{2} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$		

Simultaneous Quasi-F Ratio (F')

• F' was proposed by Clark (1973) as a quasi-F test that treats both items and subjects as random factors

$$F'(df_{num}, df_{den}) = \frac{MS_{T} + MS_{SxI}}{MS_{TxS} + MS_{I}}$$
where $df_{num} = \frac{(MS_{T} + MS_{SxI})^{2}}{\frac{MS_{T}}{df_{T}} + \frac{MS_{SxI}}{df_{SxI}}}$ and $df_{den} = \frac{(MS_{TxS} + MS_{I})^{2}}{\frac{MS_{TxS}}{df_{TxS}} + \frac{MS_{I}}{df_{I}}}$

$$F'(df_{num}, df_{den}) = \frac{(2*\sigma_{e}^{2}) + (2*\sigma_{SxI}^{2}) + (\#I*\sigma_{TxS}^{2}) + (\#S*\sigma_{I}^{2}) + (\#I*\#S*\sigma_{T}^{2})}{(2*\sigma_{e}^{2}) + (2*\sigma_{SxI}^{2}) + (\#I*\sigma_{TxS}^{2}) + (\#S*\sigma_{I}^{2})}$$

- Numerator then exceeds the denominator by exactly the treatment variance as desired... except it requires complete data given that it relies on least squares
 - » Not feasible in most real-world experiments

Minimum of Quasi-F Ratio (Min F')

• Min F' was developed to be used from F_1 and F_2 results:

min F'(df_{num},df_{den}) =
$$\frac{MS_T}{MS_{TxS} + MS_I} = \frac{F_1 * F_2}{F_1 + F_2}$$

- But given that Min F' is overly conservative, having to show significance by both models is often required instead:
 - > the F_1 by F_2 criterion... but two wrongs don't make a right
- Wouldn't it be nice if we had some way to treat subjects and items as the random effects they actually are???
 - > And to assess the extent to which items are actually exchangeable?
 - > And that all the extraneous item variables were adequately controlled?
 - Multilevel models to the rescue! ... maybe?

Multilevel Models to the Rescue?

Original Data per Person

	B1	B2
A1	Trial 001 Trial 002	Trial 101 Trial102
<u>۸</u> ۵	Trial 201 Trial 202	Trial 200 Trial 301 Trial302
AZ	 Trial 300	 Trial 400

Pros:

- Use all original data, not summaries
- Responses can be missing at random
- Can include continuous trial predictors

Cons:

• Is still wrong

Level 1:
$$y_{ts} = \beta_{0s} + \beta_{1s}A_{ts} + \beta_{2s}B_{ts} + \beta_{3s}A_{ts}B_{ts} + e_{ts}$$

Level 2: $\beta_{0s} = \gamma_{00} + U_{0s}$ $\beta_{1s} = \gamma_{10}$ $\beta_{2s} = \gamma_{20}$ $\beta_{3s} = \gamma_{30}$ Level 1 = Within-Subject Variation (Across Trials)

Level 2 = Between-Subject Variation

Multilevel Models to the Rescue?

Empty Means, Crossed Random Effects Models

• Residual-only model:

$$ightarrow RT_{tis} = \gamma_{000} + e_{tis}$$

> Assumes no effects (dependency) of subjects or items

Random subjects model:

- > $RT_{tis} = \gamma_{000} + U_{00s} + e_{tis}$
- Models systematic mean differences between subjects

Random subjects and items model:

>
$$RT_{tis} = \gamma_{000} + U_{00s} + U_{0i0} + e_{tis}$$

> Also models systematic mean differences between items

A Better Way of (Multilevel) Life

Random effects over **subjects** of **item** or **trial** predictors can also be tested and predicted.

Multilevel Model with Crossed Random Effects:

 $\begin{aligned} \text{RT}_{\text{tis}} &= \gamma_{000} + \gamma_{010} \text{A}_{i} + \gamma_{020} \text{B}_{i} + \gamma_{030} \text{A}_{i} \text{B}_{i} \\ &+ \textbf{U}_{\textbf{00s}} + \textbf{U}_{\textbf{0i0}} + \textbf{e}_{\textbf{tis}} \end{aligned}$

- Both subjects and items as random effects:
 - > Subject predictors explain between-subject mean variation: τ_{0S}^2
 - > Item predictors explain between-item mean variation: τ_{0I}^2
 - > Trial predictors explain trial-specific residual variation: σ_e^2

Example 1: Psycholinguistic Study (Locker, Hoffman, & Bovaird, 2007)

- Crossed design: 38 subjects by 39 items (words or nonwords)
- · Lexical decision task: RT to decide if word or nonword
- 2 word-specific predictors of interest:
 - > A: Low/High Phonological Neighborhood Frequency
 - » B: Small/Large Semantic Neighborhood Size

Tests of Fixed Effects by Model

	A: Frequency	B: Size	A*B: Interaction	
	Marginal Main	Marginal Main	of Frequency	
	Effect	Effect	by Size	
F ₁ Subjects	F(1,37) = 16.1	F(1,37) = 14.9	F(1,37) = 38.2	
ANOVA	p = .0003	p = .0004	p < .0001	
F ₂ Words	F(1,35) = 5.3	F(1,35) = 4.5	F(1,35) = 5.7	
ANOVA	p = .0278	p = .0415	p = .0225	
F' min	F(1,56) = 4.0	F(1,55) = 3.5	F(1,45) = 5.0	
(via ANOVA)	p = .0530	p = .0710	p = .0310	
Crossed MLM	F(1,32) = 5.4	<i>F</i> (1,32) = 4.6	F(1,32) = 6.0	
(via REML)	p = .0272	<i>p</i> = .0393	p = .0199	

Tests of Fixed Effects by Model

	A: Frequency	B: Size	A*B: Interaction	
	Marginal Main	Marginal Main	of Frequency	
	Effect	Effect	by Size	
F ₁ Subjects	F(1,37) = 16.1	F(1,37) = 14.9	F(1,37) = 38.2	
ANOVA	p = .0003	p = .0004	p < .0001	
F ₂ Words	F(1,35) = 5.3	F(1,35) = 4.5	F(1,35) = 5.7	
ANOVA	p = .0278	p = .0415	p = .0225	
F' min	F(1,56) = 4.0	F(1,55) = 3.5	F(1,45) = 5.0	
(via ANOVA)	p = .0530	p = .0710	p = .0310	
Crossed MLM	F(1,32) = 5.4	<i>F</i> (1,32) = 4.6	F(1,32) = 6.0	
(via REML)	p = .0272	<i>p</i> = .0393	p = .0199	

Tests of Fixed Effects by Model

	A: Frequency	B: Size	A*B: Interaction	
	Marginal Main	Marginal Main	of Frequency	
	Effect	Effect	by Size	
F ₁ Subjects	F(1,37) = 16.1	F(1,37) = 14.9	F(1,37) = 38.2	
ANOVA	p = .0003	p = .0004	p < .0001	
F ₂ Words	F(1,35) = 5.3	F(1,35) = 4.5	F(1,35) = 5.7	
ANOVA	p = .0278	p = .0415	p = .0225	
F' min	F(1,56) = 4.0	F(1,55) = 3.5	<i>F</i> (1,45) = 5.0	
(via ANOVA)	p = .0530	p = .0710	<i>p</i> = .0310	
Crossed MLM	F(1,32) = 5.4	<i>F</i> (1,32) = 4.6	F(1,32) = 6.0	
(via REML)	p = .0272	<i>p</i> = .0393	p = .0199	

Simulation: Type 1 Error Rates

Conc	lition	Models					
		1:	2:	3:	4:	5:	6:
Item	Subject	Both	Random	Random	No	F1	F2
Variance	Variance	Random	Subjects	Items	Random	Subjects	Item
		Effects	Only	Only	Effects	ANOVA	ANOVA
Item Effe	ct:						
2	2	0.03	0.09	0.03	0.09	0.09	0.03
2	10	0.05	0.14	0.05	0.12	0.15	0.05
10	2	0.04	0.32	0.04	0.31	0.32	0.04
10	10	0.05	0.31	0.05	0.29	0.33	0.05
Subject E	ffect:						
2	2	0.04	0.04	0.12	0.11	0.04	0.12
2	10	0.05	0.05	0.34	0.34	0.05	0.36
10	2	0.04	0.03	0.12	0.09	0.03	0.12
10	10	0.06	0.06	0.34	0.31	0.05	0.37

Model Items as Fixed \rightarrow Wrong Item Effect

Cond	lition		Models				
		1:	2:	3:	4:	5:	6:
Item	Subject	Both	Random	Random	No	F1	F2
Variance	Variance	Random	Subjects	Items	Random	Subjects	Item
		Effects	Only	Only	Effects	ANOVA	ANOVA
Item Effe	ct:		-				
2	2	0.03	0.09	0.03	0.09	0.09	0.03
2	10	0.05	0.14	0.05	0.12	0.15	0.05
10	2	0.04	0.32	0.04	0.31	0.32	0.04
10	10	0.05	0.31	0.05	0.29	0.33	0.05
Subject E	ffect:						
2	2	0.04	0.04	0.12	0.11	0.04	0.12
2	10	0.05	0.05	0.34	0.34	0.05	0.36
10	2	0.04	0.03	0.12	0.09	0.03	0.12
10	10	0.06	0.06	0.34	0.31	0.05	0.37

Model Subjects as Fixed \rightarrow Wrong Subject Effect

Condition		Models					
		1:	2:	3:	4:	5:	6:
Item	Subject	Both	Random	Random	No	F1	F2
Variance	Variance	Random	Subjects	Items	Random	Subjects	Item
		Effects	Only	Only	Effects	ANOVA	ANOVA
Item Effect:							
2	2	0.03	0.09	0.03	0.09	0.09	0.03
2	10	0.05	0.14	0.05	0.12	0.15	0.05
10	2	0.04	0.32	0.04	0.31	0.32	0.04
10	10	0.05	0.31	0.05	0.29	0.33	0.05
Subject Effect:							
2	2	0.04	0.04	0.12	0.11	0.04	0.12
2	10	0.05	0.05	0.34	0.34	0.05	0.36
10	2	0.04	0.03	0.12	0.09	0.03	0.12
10	10	0.06	0.06	0.34	0.31	0.05	0.37

Example 1: Summary

- Although the $F_1 \times F_2$ criterion approach remains the current standard, its shortcomings are well known
 - > F₁ ignores systematic variation across items
 - > F₂ ignores systematic variation across subjects
 - Neither provides an accurate test of the effects of interest while considering **all** the relevant variation in response time
- Crossed random effects models may provide a tenable alternative with additional analytic flexibility...
 ...as illustrated by the next example.

Example 2: Visual Search for Change (Hoffman & Rovine, 2007)

- Outcome (DV)
 - > Natural Log of RT to detect a change (up to 60 seconds)
 - > 51 out of 80 natural scenes with > 90% accuracy
- Between-Subjects IV
 - > Age: Younger (n = 96) vs. Older (n = 57) Adults
- Within-Subjects IVs
 - > Change Meaningfulness to Driving (Low vs. High)
 - > Change Salience (Low vs. High)
- Original Analysis Plan
 - > 2 x 2 x 2 mixed effects ANOVA on response time

Analysis Plan, Reconsidered Issue #1: Systematic Item Differences

- Collapsing across scenes into condition means ignores systematic differences between scenes
- Treats scenes as fixed effects \rightarrow F₁ ANOVA problem
 - > Scenes will still vary in difficulty due to uncontrolled factors
 - > Effect sizes may be inflated if that variability is not included
- ANOVA requires complete data to model variation across persons and scenes simultaneously...

Can you find

the change?

Analysis Plan, Reconsidered Issue #2: Missing RTs for Incorrect Trials

- Any changes not detected within 60 sec were "inaccurate"
- Only scenes with > 90% accuracy were included, but...
- RTs are more likely to be missing for difficult scenes
 - > Downwardly biased condition mean RTs
 - > Biased effects of predictor variables related to missingness
 - > Loss of power due to listwise deletion
- ANOVA assumes RTs are missing completely at random, but an assumption of missing at random is more tenable
 - Missing at Random -> probability of missingness is unrelated to unobserved outcome *after* predictors and observed responses are included in the model

Original RTs Across Trials by Ability

Biased Condition Mean RT

Analysis Plan, Reconsidered Issue #3: Effects of Item Predictors

- 51 scenes varied in change relevance and salience
- Relevance and salience were separately rated for each scene on a continuous scale of 0-5
 - > Relevance and salience r = .22
 - > Median splits formed categories of "low" & "high"
 - Uneven number of scenes per "condition" by design (and because of timed-out trials)
- Predictors of meaning and salience should be treated as continuous, which is problematic with an ANOVA.

Creating "Conditions" $(r = .22 \rightarrow r \approx 0)$

Analysis Plan, Reconsidered Issue #4: Age Differences in Means

- "Younger" and "Older" adults were sampled, but...
 - > Much more variability in age in the older group
 - 18-32 years (mostly 18-21) vs. 65-86 years
 - > Age is not a strict dichotomy:
 - Including a single mean age group difference is not adequate
 - Separating "young-old" from "old-old" doesn't really help, either
- Two effects of age are needed:
 - > "Age Group" \rightarrow difference between young and old
 - > "Years over 65" \rightarrow slope of age in the older group
 - > This is a piecewise model!

Piecewise (Semi-Continuous) Effects of Age on RT

Piecewise (Semi-Continuous) Effects of Age on RT

Analysis Plan, Reconsidered Issue #5: Age Differences in Variances

- In addition to modeling differences in the means by age, the variances are likely to differ by age as well:
 - Older adults are likely to be more different from each other than are younger adults
 - Greater between-person variation in older group
 - > Older adults are likely to be more variable across trials than are younger adults
 - Greater within-person variation in older group
- The model needs to accommodate heterogeneity of variance across age groups at multiple analysis levels

Analysis Model, Reconsidered

- Scene predictors of relevance and salience should be modeled as continuous; the effect of age should be semi-continuous.
 - > MLM allows categorical or continuous predictors at any level.
- RTs are not missing completely at random.
 - > MLM only assumes missing at random.
- Systematic differences between scenes should be included as a component of overall variance in RT.
 - > MLM allows crossed random effects of subjects and items.
- Magnitude of variation between persons and within-persons (between trials) should be allowed to differ by age group.
 - > MLM allows for heterogeneous variances by group at any level.

Example #2: Final Model

PSYC 944: Lecture 8

Example #3: Eye Tracking (Mills et al., 2011)

- Does change over time in eye movements depend on the purpose of looking at a scene?
 - > DVs: Fixation duration, saccadic amplitude
 - > Each of the 53 subjects viewed the same 67 scenes for 6 sec
 - > 4 between-subject viewing groups:
 - Free-view, Memorize, Rate Pleasantness, Search for n/z
- Original analysis: Mixed-effects ANOVA
 - Between-subjects task by chopped-up viewing time
 - Average over scenes; average within 20 "time" 500 msec conditions

Example #3: Eye Tracking

- New analysis: Growth curve modeling of eye movements
 - > Individual eye movements nested within scenes and within subjects
 - Scenes and subjects are crossed random effects
 - Subject predictor = which viewing task they did, no scene predictors
 - > Level-1 predictor = viewing time (with random effects over subjects)

Example #3: Eye Tracking

Fixation duration changes *during* scene viewing based on goals

BSYC 944: Lecture 8

Example #3: Eye Tracking

Empty Means Model Decomposition of Fixation Duration Variance (note: % of total is used, not ICC)

<u>Empty means models:</u>

Residual variance only

+ Subject, + Item Random Intercepts

- <u>Unconditional models:</u>
 - + Linear and quadratic fixed time slopes
 - + Random linear time slope over subjects (could be random over items, too)
- Conditional models for task effects:
 - Main effect of viewing task → R² ≈ .32 for subject intercept variance
 - > Task * linear time → $R^2 \approx .03$ for subject linear time slope variance
 - > Task * quadratic time \rightarrow R² \approx .00 for residual variance (no random quadratic)

Example #4: Tracking and Talking:

(Kemper, Hoffman, Schmalzried, Herman, & Kieweg (2011)

- Model: speech nested within subjects (no "items")
- **Dual task:** Track red ball with mouse while talking to examine costs of...

Speech planning: current tracking suffers if *next* speech utterance is more complicated

 Speech production: current tracking suffers and becomes more variable while producing more complex speech and immediately after

Conclusions

- An ANOVA model may be less than ideal when:
 - Stimuli are not completely controlled or exchangeable
 - > Experimental conditions are not strictly discrete
 - > Missing data may result in bias, a loss of power, or both
- ANOVA is a special case of a more general family of multilevel models (with nested or crossed effects as needed) that can offer additional flexibility:
 - \succ Useful in addressing statistical problems \rightarrow
 - Dependency, heterogeneity of variance, unbalanced or missing data
 - Examine predictor effects pertaining to each source of variation more accurately given that all variation is properly represented in the model
 - \succ Useful in addressing substantive hypotheses \rightarrow
 - Examining individual differences in effects of experimental manipulations

References for Papers Mentioned

- Clark, H.H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. *Journal of Verbal Learning and Verbal Behavior, 12*, 335-359.
- Hoffman, L., & Rovine, M. J. (2007). Multilevel models for the experimental psychologist: Foundations and illustrative examples. *Behavior Research Methods*, *39*(1), 101-117. Electronic appendix available at Lesa's website.
- Kemper, S., Hoffman, L., Schmalzried, R., Herman, R., & Kieweg, D. (2011). Tracking talking: Dual task costs of planning and producing speech for young versus older adults. *Aging, Neuropsychology, and Cognition, 18*(3), 257-279.
- Locker Jr., L., Hoffman, L., & Bovaird, J. A. (2007). On the use of multilevel modeling in the analysis of psycholinguistic data. *Behavior Research Methods*, 39(4), 723-730. Electronic appendix available at Lesa's website.
- Mills, M., Hollingworth, A., Van der Stigchel, S., Hoffman, L., & Dodd, M. D. (2011). Examining the influence of task set on eye movements and fixations. *Journal of Vision*, 11(8), 1-15.