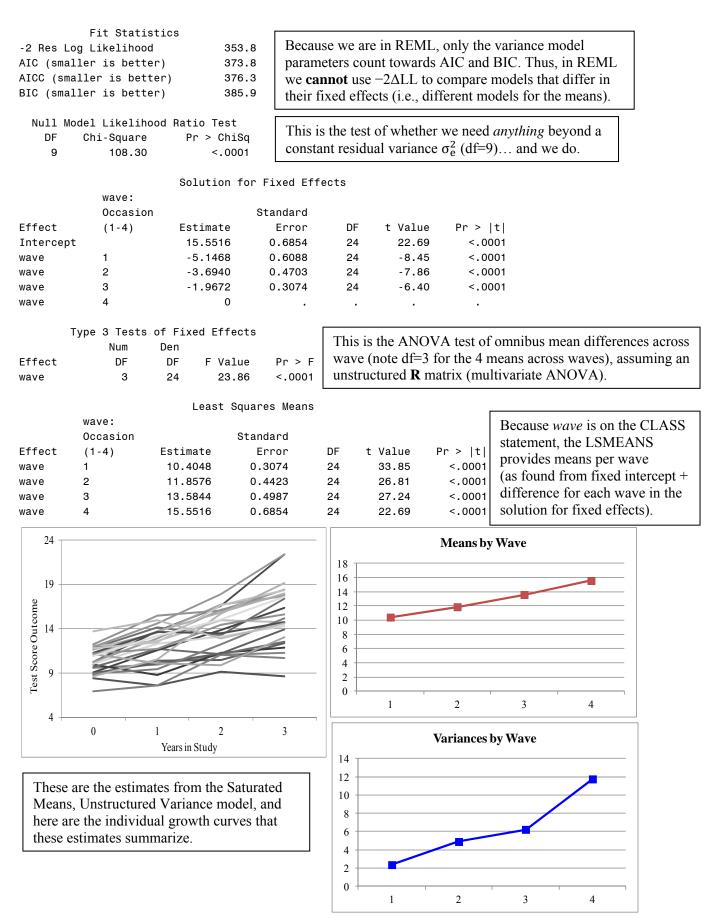
Practice with Fixed and Random Effects of Time in Modeling Within-Person Change


The models for this example come from Hoffman (in preparation) chapter 5. We will be examining the extent to which change in a test score outcome across four annual occasions can be described with fixed and random linear effects of time (indexed by years in study, in which 0 is baseline) in a sample of 25 persons.

SAS Syntax and Output for Data Manipulation:

```
* Location for files to be saved - CHANGE THIS TO YOUR DIRECTORY;
%LET filesave=F:\Example Data\Chapter 5 Data;
LIBNAME filesave "&example.";
* Import data into work library, center time;
DATA example5; SET filesave.example5;
        time = wave - 1; LABEL time= "time: Time in Study (0=1)";
RUN;
```

The **ANSWER KEY** for both the model for the means (via saturated means) and the model for the variances (via unstructured **R** matrix of all possible variances and covariances) is possible to estimate in balanced data:

```
TITLE1 "Saturated Means, Unstructured Variance Model -- the ANSWER KEY";
PROC MIXED DATA=example5 COVTEST NOITPRINT NOCLPRINT METHOD=REML;
       CLASS IDnum wave;
       MODEL outcome = wave / SOLUTION DDFM=Satterthwaite;
       REPEATED wave / R RCORR TYPE=UN SUBJECT=IDnum;
       LSMEANS wave;
RUN:
            Dimensions
Covariance Parameters
                                 10
Columns in X
                                  5
Columns in Z
                                  0
Subjects
                                 25
Max Obs Per Subject
                                  4
           Estimated R Matrix for IDnum 1
 Row
            Col1
                        Col2
                                    Col3
                                                Col4
          2.3618
                      2.7867
                                  1.9566
                                              2.4204
   1
   2
          2.7867
                      4.8900
                                  4.0440
                                              5.5525
                                                          Because this model uses REPEATED
   3
          1.9566
                      4.0440
                                  6.2172
                                              7.7994
   4
          2.4204
                      5.5525
                                  7.7994
                                             11.7437
                                                          only (no RANDOM statement), the R
                                                          matrix holds the total variances and
     Estimated R Correlation Matrix for IDnum 1
                                                          covariances over waves directly.
 Row
            Col1
                        Col2
                                   Col3
                                                Col4
                                                          Likewise, RCORR holds the total
   1
          1.0000
                      0.8200
                                  0.5106
                                              0.4596
                                                          correlations over waves directly.
                      1.0000
                                              0.7327
          0.8200
                                  0.7334
   2
   3
          0.5106
                      0.7334
                                  1.0000
                                              0.9128
   4
          0.4596
                      0.7327
                                  0.9128
                                               1.0000
                 Covariance Parameter Estimates
                                   Standard
                                                    Ζ
Cov Parm
            Subject
                       Estimate
                                      Error
                                                Value
                                                              Pr Z
UN(1,1)
            IDnum
                         2.3618
                                     0.6818
                                                 3.46
                                                            0.0003
            IDnum
                         2.7867
                                     0.8971
                                                 3.11
                                                            0.0019
UN(2,1)
            IDnum
UN(2,2)
                         4.8900
                                     1.4116
                                                 3.46
                                                            0.0003
UN(3,1)
            IDnum
                         1.9566
                                     0.8783
                                                 2.23
                                                            0.0259
UN(3,2)
            IDnum
                         4.0440
                                     1.3958
                                                 2.90
                                                            0.0038
UN(3,3)
            IDnum
                         6.2172
                                     1.7947
                                                 3.46
                                                            0.0003
            IDnum
                         2.4204
                                     1.1831
                                                 2.05
                                                            0.0408
UN(4,1)
UN(4,2)
            IDnum
                         5.5525
                                     1.9176
                                                 2.90
                                                            0.0038
                                                 3.30
                                                            0.0010
UN(4,3)
            IDnum
                         7.7994
                                     2.3615
            IDnum
                        11.7437
                                     3.3901
                                                            0.0003
UN(4,4)
                                                 3.46
```


If an unstructured R matrix was not possible to estimate, I'd still examine the answer key for the model for the means (via a saturated means model), but estimate a random intercept only (which should always be possible):

PROC MI		Means, Rando ample5 COVTE					WER KEY";
		me = wave / s		TEM-Satto	rthwaite.		
		RCEPT / G V V					
		ve / R TYPE=			-		
	LSMEANS wave	e;					
RUN;							
	Estimated	V Matrix for	IDnum 1				
Row	Col1	Col2	Col3	Col4			
1	6.3032	4.0933	4.0933	4.0933			
2	4.0933	6.3032	4.0933	4.0933			
3	4.0933	4.0933	6.3032	4.0933			
4	4.0933	4.0933	4.0933	6.3032			
Est	timated V Cor	relation Matri	x for IDnum.	1			
Row	Col1	Col2	Col3	Col4			
1	1.0000	0.6494	0.6494	0.6494			
2	0.6494	1.0000	0.6494	0.6494			
3	0.6494	0.6494	1.0000	0.6494			
4	0.6494	0.6494	0.6494	1.0000			
	Cov	ariance Parame	ter Estimat	es			
			Standard	Z			
Cov Parm	n Subject	Estimate	Error	Value	Pr > Z		
UN(1,1)	IDnum	4.0933	1.3443	3.04	0.0012		
wave	IDnum	2.2099	0.3683	6.00	<.0001		
	Fit Stati	stics					
-2 Res L	_og Likelihoo	d 41	2.5				
AIC (sma	aller is bett	er) 41	6.5				
AICC (sn	naller is bet	ter) 41	6.7				
BIC (sma	aller is bett	er) 41	9.0				
Null M	Model Likelih	ood Ratio Test					
DF	Chi-Square	Pr > Chi	.Sq				
1	49.51	<.00	01				
		Solution	for Fixed E	ffects			
	wave:						
	Occasio	n	Standard				
Effect	(1-4)	Estimate	Error	DF	t Value	Pr > t	
Intercep	ot	15.5516	0.5021	42.4	30.97	<.0001	
wave	1	-5.1468	0.4205	72	-12.24	<.0001	
wave	2	-3.6940	0.4205	72	-8.79	<.0001	
wave	3	-1.9672	0.4205	72	-4.68	<.0001	
wave	4	0					
	Type 3 Tests	of Fixed Effe	cts				
	Num	Den		This	is the ANOV	/A test of on	nnibus mean differences across
Effect	DF	DF FVal	.ue Pr>	F wave	(note df=3 f	for the 4 mea	ins across waves), assuming a
wave	3	72 55.	82 <.000				matrix; univariate ANOVA).
				Tunta			
		Least S	quares Mean	S			
	wave:						
	Occasion		Standard				
Effect	(1-4)	Estimate	Error	DF t	: Value P	r > t	
wave	1	10.4048	0.5021	42.4	20.72	<.0001	
wave	2	11.8576	0.5021	42.4	23.62	<.0001	
wave	3	13.5844	0.5021	42.4	27.05	<.0001	
wave	4	15.5516	0.5021	42.4	30.97	<.0001	

5.1: Empty Means, Random Intercept Model

<u>5.1: En</u>	npty Means	<u>, Random In</u>	<u>tercept Ma</u>	del		[]
		npty Means, 1 cample5 COVT				Level 1: $y_{ti} = \beta_{0i} + e_{ti}$
METHOD=						Level 2: $\beta_{0i} = \gamma_{00} + U_{0i}$
	CLASS IDnum	-	TON DEFIC			Composite: $y_{ti} = (\gamma_{00} + U_{0i}) + e_{ti}$
	RANDOM INTE	me = / SOLUT RCEPT / G V .ve / R TYPE=	VCORR TYPE	UN SUBJI	•	$\begin{array}{c} \text{composite. } \mathbf{y}_{\text{ti}} = \left(\gamma_{00} + \mathcal{O}_{0i}\right) + \mathcal{O}_{\text{ti}} \end{array}$
RUN;	REFERIED Wa	We / K IIFE-	VC BUBUECI	= IDilum,		
		R Matrix for		_		
Row	Col1	Col2	Col3	Col4		
1	7.0554	7 0554				
2 3		7.0554	7.0554			
4			7:0004	7.0554		
	Estimated	l G Matrix				
		IDnum:				
		Person ID				
	Effect	number	Col1			
1	Intercept	1	2.8819			
	Estimated	d V Matrix for	IDnum 1		Decourse this	model uses the REPEATED and
Row	Col1	Col2	Col3	Col4		tatements, the V matrix holds the
1	9.9373	2.8819	2.8819	2.8819		es and covariances over waves
2	2.8819	9.9373	2.8819	2.8819		
3	2.8819	2.8819	9.9373	2.8819	· · ·	G and R back together through
4	2.8819	2.8819	2.8819	9.9373). Likewise, VCORR holds the
F					total correlat	ions over waves.
ES [.] Row	timated v Cor Col1	relation Matr Col2	Col3	m 1 Col4		
1	1.0000	0.2900	0.2900	0.2900	LICORD	
2	0.2900	1.0000	0.2900	0.2900	VCORR pro	vides the ICC as: IntVar/TotalVar
3	0.2900	0.2900	1.0000	0.2900		
4	0.2900	0.2900	0.2900	1.0000		
	Cov	variance Param	eter Estima	tes		
			Standard	Z		
Cov Parı	m Subject	Estimate	Error	Value	Pr > Z	
UN(1,1)	IDnum	2.8819	1.3717	2.10		Random intercept variance in G
wave	IDnum	7.0554	1.1521	6.12	<.0001	Residual variance in R
	Fit Stati	stics				
-2 Res I	Log Likelihoo		02.2			
	aller is bett		06.2			
-	maller is bet		06.3			
	aller is bett		08.7			
		nood Ratio Tes	l Thie	is the test	of whether we	need the random
DF 1	Chi-Square 9.79		190 1		ce (so df=1)	
	5.73	, 0.0		1	()	
	S	Solution for F	ixed Effect	S		
		Standard				
Effect	Estimat			t Value	Pr > t	
Interce	pt 12.849	0.4311	24	29.81	<.0001 Th	is is gamma00

5.3: Fixed Linear Time, Random Intercept Model

```
TITLE1 "Eq 5.3: Fixed Linear Time, Random Intercept Model";
PROC MIXED DATA=example5 COVTEST NOITPRINT NOCLPRINT
                                                                                y_{ti} = \beta_{0i} + \beta_{1i} (Time_{ti}) + e_{ti}
                                                                    Level 1:
METHOD=REML;
  CLASS IDnum wave;
                                                                    Level 2:
                                                                                \beta_{0i} = \gamma_{00} + U_{0i}
  MODEL outcome = time / SOLUTION DDFM=Satterthwaite;
  RANDOM INTERCEPT / G V VCORR TYPE=UN SUBJECT=IDnum;
  REPEATED wave / R TYPE=VC SUBJECT=IDnum;
                                                                                 \beta_{1i} = \gamma_{10}
  ESTIMATE "Intercept at Time 0" int 1 time 0;
  ESTIMATE "Intercept at Time 1" int 1 time 1;
                                                                    Composite: y_{ti} = (\gamma_{00} + U_{0i}) + \gamma_{10} (Time_{ti}) + e_{ti}
  ESTIMATE "Intercept at Time 2" int 1 time 2;
  ESTIMATE "Intercept at Time 3" int 1 time 3;
RUN;
```

Note the two different versions of the "time" variable in the syntax. Both are necessary here because they do different things. "**Wave**" is treated as a **categorical** predictor, and its role is to structure the **R** matrix in the event of missing data. Therefore, "wave" goes on the CLASS and REPEATED statements. In contrast, "**time**" is treated as a **continuous** predictor, and its role is to index linear effects of time (and it is centered such that wave 1 = time 0). Accordingly, in the ESTIMATE statements, only one value after "time" is needed.

Row 1 2 3 4	Estimatec Coll 2.1725	I R Matrix for Col2 2.1725	Dnum 1 Col3 2.1725	Col4 2.1725	After controlling for the fixed linear effect of time, the residual variance was reduced from $\sigma_e^2 = 7.06$ in the empty means, random intercept model to $\sigma_e^2 = 2.17$ in this model. This is a reduction of $(7.06 - 2.17) / 7.06 = .69$ (or 69% of the residual variance is accounted for by a fixed linear time).
	Estimated	l G Matrix		L L	
		IDnum:			However, the random intercept variance actually increased
		Person ID			from 2.88 to 4.10. This is because of how $\tau_{U_0}^2$ is found:
Row	Effect	number	Col1		0
1	Intercept	1	4.1026		true $\tau_{U_0}^2$ = observed $\tau_{U_0}^2 - (\sigma_e^2/n)$ So reducing σ_e^2 will make $\tau_{U_0}^2$ increase.
	Estimator	l V Matrix for	TDDum 1		So reducing o_{θ} with make v_{0_0} increase.
Row	Col1	Col2	Col3	Col4	
1	6.2751	4.1026	4.1026	4.1026	
2	4.1026	6.2751	4.1026	4.1026	
3	4.1026	4.1026	6.2751	4.1026	
4	4,1026	4.1026	4,1026	6.2751	
Es	stimated V Cor				
Row	Col1	Col2	Col3	Col4	
1	1.0000	0.6538	0.6538	0.6538	
2	0.6538	1.0000	0.6538	0.6538	
3	0.6538	0.6538	1.0000	0.6538	
4	0.6538	0.6538	0.6538	1.0000	
	Cov	variance Paran	neter Estimat	es	
			Standard	Z	
Cov Par	rm Subject	Estimate	Error	Value	Pr > Z
UN(1,1)	-	4.1026	1.3441	3.05	
wave	IDnum	2.1725	0.3572	6.08	
	Fit Stati	stics			
-2 Res	Log Likelihoo		15.1 Are	11	the comminent of the DATE to comine the difference for all income offered
	aller is bett				ed to examine the $-2\Delta LL$ to see if adding a fixed linear effect
•	smaller is bet	,	19.2 Of th	me impro	ved model fit in REML? If not, what do we do instead?
•	naller is bett	,	121.5		
``			L		
Null DF 1	Model Likelih Chi-Square 51.12	e Pr > Cł	niSa This		ether we need the random intercept lf=1) and we (still) do.

 $y_{ti} = \beta_{0i} + \beta_{1i} (Time_{ti}) + e_{ti}$

 $\beta_{0i} = \gamma_{00} + U_{0i}$

 $\beta_{1i} = \gamma_{10} + U_{1i}$

	Sol	ution for Fix	ked Effect	s				
		Standard						
Effect	Estimate	Error	DF	t Value	Pr > t			
Intercept	10.2745	0.4743	34.7	21.66	<.0001	this is gammaOO		
time	1.7167	0.1318	74	13.02	<.0001	this is gamma10		
Туре	e 3 Tests c	of Fixed Effed	cts					
51		Den						
Effect	DF	DF F Valu	ue Pr>	F				
time	1	74 169.5	57 <.00	01				
		Est	timates 🗲	These are	the predi	cted outcome mean	s from a fi	xed linear model
			Standard					
Label		Estimate	Error	DF	t Value	Pr > t		
Intercept at	: Time O	10.2745	0.4743	34.7	21.66	<.0001		
Intercept at	: Time 1	11.9912	0.4361	25.1	27.50	<.0001		
Intercept at	: Time 2	13.7080	0.4361	25.1	31.43	<.0001		
Intercept at	: Time 3	15.4247	0.4743	34.7	32.52	<.0001		

Level 1:

Level 2:

5.5: Random Linear Time Model

```
TITLE1 "Eq 5.5: Random Linear Time Model";
PROC MIXED DATA=example5 COVTEST NOITPRINT
                                                       Composite: y_{ti} = (\gamma_{00} + U_{0i}) + (\gamma_{10} + U_{1i}) (Time_{ti}) + e_{ti}
NOCLPRINT METHOD=REML;
  CLASS IDnum wave;
  MODEL outcome = time / SOLUTION DDFM=Satterthwaite;
  RANDOM INTERCEPT time / G V GCORR VCORR TYPE=UN SUBJECT=IDnum;
  REPEATED wave / R TYPE=VC SUBJECT=IDnum;
  ESTIMATE "Intercept at Time 0" int 1 time 0;
  ESTIMATE "Intercept at Time 1" int 1 time 1;
  ESTIMATE "Intercept at Time 2" int 1 time 2;
  ESTIMATE "Intercept at Time 3" int 1 time 3;
RUN;
```

Note that the "time" variable gets included in the RANDOM statement, not "wave"-including "wave" would result in model non-convergence, because it would try to estimate a random slope variance for each possible difference between waves (instead of a single variance for a continuous random slope through all the waves).

Row 1 2 3 4	Col1 0.6986	d R Matrix f Col2 0.6986 timated G Ma	Col3 0.6986	Col4 0.6986	After adding a random linear effect of time, the residual variance is smaller, but it is not correct to say that it has been reduced. Random effects do not explain variance; they simply re-allocate it. Here, this means that part of what was residual is now individual differences in the linear effect of time as a new pile of variance in the G matrix below.
		IDnum: Person ID			
Row	Effect	number	Col1	Col2	
1	Intercept	1	2.2624	0.05454	The G matrix provides the variances and covariances of the
2	time	1	0.05454	0.9089	individual random effects. Now G is a 2x2 matrix because we have 2 random effects (intercept, linear slope).
	Estimate	d G Correlat	ion Matrix		
		IDnum:			The GCORR matrix provides the correlation(s) among the
		Person ID			individual random effects. Here, the individual intercepts
Row	Effect	number	Col1	Col2	and slopes are correlated $r = .04$.
1	Intercept	1	1.0000	0.03803	and stopes are correlated $r = .04$.
2	time	1	0.03803	1.0000	

	Estimatod	V Matrix for			
Row	Col1	Col2	Col3	Col4	
1	2.9611	2.3170	2.3715	2.4260	
2	2.3170	3.9790	4.2438	5.2073	The V matrix holds the total variances and
3	2.3715	4.2438	6.8148	7.9885	covariances over waves (from putting G and R
4	2.4260	5.2073	7.9885	11.4684	back together through the Z matrix). Likewise,
Esti	imated V Cori	relation Mat	rix for IDnu	m 1	VCORR holds the total correlations over
Row	Col1	Col2	Col3	Col4	waves. Note that all of these are now predicted
1	1.0000	0.6750	0.5279	0.4163	to differ as a function of which wave it is (see
2	0.6750	1.0000	0.8150	0.7709	table 5.2 for a description of how this works).
3	0.5279	0.8150	1.0000	0.9036	
4	0.4163	0.7709	0.9036	1.0000	
	0.00	niona Dona		***	
	Cova	ariance Parar	ieter Estima Standard	tes Z	
Cov Parm	Subject	Estimate	Error	Z Value	Pr Z
UN(1,1)	IDnum	2.2624	0.8003	2.83	0.0023 Random intercept variance in G
UN(2,1)	IDnum	0.05454	0.3507	0.16	0.8764 Random intercept-slope covariance in G
UN(2,2)	IDnum	0.9089	0.3040	2.99	0.0014 Random linear slope variance in G
wave	IDnum	0.6986	0.1397	5.00	<.0001 Residual variance in R
	Fit Statis	stics			
-2 Res Lo	og Likelihood	b the second			I to examine the $-2\Delta LL$ to see if adding a random linear
AIC (smal	ller is bette	er) (374.7 effe	et of time in	mproved model fit in REML? If so, how many model
AICC (sma	aller is bet	ter) S	375.2 para	meters have	e we added?
BIC (smal	ller is bette	er) (379.6		
		ood Ratio Tes	h19	tests wheth	her we need <i>anything</i> in the G matrix (so df=3). Note this
DF	Chi-Square	Pr > Cł			us if we need the random linear time slope specifically!
3	99.47	<.(0001		as it we need the fulldoin intent time stope speethearty.
	S	olution for F	ixed Effect	s	
		Standard		5	
Effect					
	Estimate		DF	t Value	Pr > t
	Estimate t 10.274	e Erroi		t Value 30.97	Pr > t <.0001 this is gamma00
Intercept time		e Erroi 5 0.3318	3 24	t Value 30.97 8.38	<.0001 this is gamma00
Intercept	t 10.274	e Erroi 5 0.3318	3 24	30.97	
Intercept time	t 10.2745 1.7167	e Erroi 5 0.3318	3 24 3 24	30.97	<.0001 this is gamma00
Intercept time	t 10.2745 1.7167	e Erroi 5 0.3318 7 0.2048	3 24 3 24	30.97	<.0001 this is gamma00
Intercept time	t 10.2745 1.7163 Type 3 Tests	e Error 5 0.3318 7 0.2048 of Fixed Eff	8 24 8 24 Fects	30.97 8.38	<.0001 this is gamma00
Intercept time T	t 10.274 1.716 Type 3 Tests Num	e Erron 5 0.3318 7 0.2048 of Fixed Eff Den DF F V8	8 24 8 24 Fects	30.97 8.38 F	<.0001 this is gamma00
Intercept time T Effect	t 10.274 1.716 Type 3 Tests Num DF	e Erron 5 0.3318 7 0.2048 of Fixed Eff Den DF F Va 24 70	8 24 8 24 Fects Alue Pr > 0.26 <.00	30.97 8.38 F 01	<.0001 this is gamma00 <.0001 this is gamma10
Intercept time T Effect	t 10.274 1.716 Type 3 Tests Num DF	e Erron 5 0.3318 7 0.2048 of Fixed Eff Den DF F Va 24 70	3 24 3 24 [±] ects alue Pr > 0.26 <.00 Estimates →	30.97 8.38 F 01	<.0001 this is gamma00
Intercept time T Effect time	t 10.274 1.716 Type 3 Tests Num DF	e Erron 5 0.3318 7 0.2048 of Fixed Eff Den DF F Va 24 70	3 24 3 24 fects alue Pr > 0.26 <.00 Estimates → Standard	30.97 8.38 F 01 These are	<.0001 this is gamma00 <.0001 this is gamma10 the predicted outcome means from a random linear model
Intercept time T Effect time Label	t 10.274 1.716 Type 3 Tests Num DF 1	e Erron 5 0.3318 7 0.2048 of Fixed Eff Den DF F Va 24 70 Estimate	3 24 3 24 alue Pr > 0.26 <.00 Estimates → Standard Error	30.97 8.38 F 01 These are DF	<.0001 this is gamma00 <.0001 this is gamma10 the predicted outcome means from a random linear model t Value Pr > t
Intercept time Effect time Label Intercept	t 10.274 1.716 Type 3 Tests Num DF 1 1	e Erron 5 0.3318 7 0.2048 of Fixed Eff Den DF F Va 24 70 Estimate 10.2745	3 24 3 24 Fects 0.26 <.00 Estimates → Standard Error 0.3318	30.97 8.38 F 01 These are DF 24	<pre><.0001 this is gamma00 <.0001 this is gamma10 the predicted outcome means from a random linear model t Value Pr > t 30.97 <.0001</pre>
Intercept time Effect time Label Intercept Intercept	t 10.274 1.716 Type 3 Tests Num DF 1 t at Time 0 t at Time 1	e Erron 5 0.3318 7 0.2048 of Fixed Eff Den DF F Va 24 70 Estimate 10.2745 11.9912	3 24 3 24 Fects 0.26 <.00 Estimates → Standard Error 0.3318 0.3736	30.97 8.38 F 01 These are DF 24 24 24	<pre><.0001 this is gamma00 <.0001 this is gamma10 the predicted outcome means from a random linear model t Value Pr > t 30.97 <.0001 32.09 <.0001</pre>
Intercept time Effect time Label Intercept Intercept Intercept	t 10.274 1.716 Type 3 Tests Num DF 1 t at Time 0 t at Time 1 t at Time 2	e Error 5 0.3318 7 0.2048 of Fixed Eff Den DF F Va 24 70 Estimate 10.2745 11.9912 13.7080	3 24 3 24 Fects 0.26 <.00 Estimates → Standard Error 0.3318 0.3736 0.5030	30.97 8.38 F 01 These are DF 24 24 24 24	<pre><.0001 this is gamma00 <.0001 this is gamma10 the predicted outcome means from a random linear model t Value Pr > t 30.97 <.0001 32.09 <.0001 27.25 <.0001</pre>
Intercept time Effect time Label Intercept Intercept Intercept	t 10.274 1.716 Type 3 Tests Num DF 1 t at Time 0 t at Time 1	e Erron 5 0.3318 7 0.2048 of Fixed Eff Den DF F Va 24 70 Estimate 10.2745 11.9912	3 24 3 24 Fects 0.26 <.00 Estimates → Standard Error 0.3318 0.3736	30.97 8.38 F 01 These are DF 24 24 24	<pre><.0001 this is gamma00 <.0001 this is gamma10 the predicted outcome means from a random linear model t Value Pr > t 30.97 <.0001 32.09 <.0001</pre>
Intercept time Effect time Label Intercept Intercept Intercept	t 10.274 1.716 Type 3 Tests Num DF 1 t at Time 0 t at Time 1 t at Time 2 t at Time 3	e Error 5 0.3318 7 0.2048 of Fixed Eff Den DF F Va 24 70 Estimate 10.2745 11.9912 13.7080 15.4247	3 24 3 24 Fects 0.26 <.00 Estimates → Standard Error 0.3318 0.3736 0.5030 0.6711	30.97 8.38 F 01 These are DF 24 24 24 24 24 24	<pre><.0001 this is gamma00 <.0001 this is gamma10 the predicted outcome means from a random linear model t Value Pr > t 30.97 <.0001 32.09 <.0001 27.25 <.0001 22.98 <.0001</pre>
Intercept time Effect time Label Intercept Intercept Intercept Me can n	t 10.274 1.716 Type 3 Tests Num DF 1 t at Time 0 t at Time 1 t at Time 2 t at Time 3 use the mod	e Error 5 0.3318 7 0.2048 of Fixed Eff Den DF F Va 24 70 Estimate 10.2745 11.9912 13.7080 15.4247 el estimates	3 24 3 24 Fects alue Pr > 0.26 <.00 Estimates → Standard Error 0.3318 0.3736 0.5030 0.6711 to calculate	30.97 8.38 F 01 These are DF 24 24 24 24 24 24 24	<pre><.0001 this is gamma00 <.0001 this is gamma10 the predicted outcome means from a random linear model t Value Pr > t 30.97 <.0001 32.09 <.0001 27.25 <.0001</pre>
Intercept time Effect time Label Intercept Intercept Intercept Me can n	t 10.274 1.716 Type 3 Tests Num DF 1 t at Time 0 t at Time 1 t at Time 2 t at Time 3 use the mod	e Error 5 0.3318 7 0.2048 of Fixed Eff Den DF F Va 24 70 Estimate 10.2745 11.9912 13.7080 15.4247	3 24 3 24 Fects alue Pr > 0.26 <.00 Estimates → Standard Error 0.3318 0.3736 0.5030 0.6711 to calculate	30.97 8.38 F 01 These are DF 24 24 24 24 24 24 24	<pre><.0001 this is gamma00 <.0001 this is gamma10 the predicted outcome means from a random linear model t Value Pr > t 30.97 <.0001 32.09 <.0001 27.25 <.0001 22.98 <.0001</pre>

Random Effect 95% CI = fixed effect $\pm (1.96*\sqrt{\text{Random Variance}})$

Intercept 95% CI =
$$\gamma_{00} \pm \left(1.96^* \sqrt{\tau_{U_0}^2}\right) = 10.27 \pm \left(1.96^* \sqrt{2.26}\right) = 7.32 \text{ to } 13.22$$

Linear Time Slope 95% CI = $\gamma_{10} \pm \left(1.96^* \sqrt{\tau_{U_1}^2}\right) = 1.72 \pm \left(1.96^* \sqrt{0.91}\right) = -0.15 \text{ to } 3.59$

Last but not least: there may still be residual covariances after modeling individual differences in the linear effect of time (i.e., adding a random linear slope to the G matrix). We can test alternative **R** matrix assumptions besides VC (which assumes no residual covariance/correlation over time) to see if this is the case:

```
TITLE1 "Random Linear Time Model + AR1 R Matrix";
PROC MIXED DATA=example5 COVTEST NOITPRINT NOCLPRINT METHOD=REML;
       CLASS IDnum wave;
       MODEL outcome = time / SOLUTION DDFM=Satterthwaite;
       RANDOM INTERCEPT time / G GCORR V VCORR TYPE=UN SUBJECT=IDnum;
       REPEATED / R RCORR TYPE=AR(1) SUBJECT=IDnum;
RUN:
           Estimated R Matrix for IDnum 1
                                    Co13
                                                Co14
 Row
            Col1
                        Co12
                                            0.000012
   1
          0.7193
                     0.01841
                                0.000471
   2
         0.01841
                     0.7193
                                0.01841
                                            0.000471
   3
        0.000471
                     0.01841
                                 0.7193
                                            0.01841
        0.000012
                   0.000471
                                 0.01841
                                              0.7193
   4
     Estimated R Correlation Matrix for IDnum 1
 Row
           Col1
                        Co12
                                    Co13
                                                Col4
         1.0000
                     0.02560
                                0.000655
                                            0.000017
   1
  2
        0.02560
                     1.0000
                                0.02560
                                            0.000655
  3
        0.000655
                     0.02560
                                 1.0000
                                            0.02560
   4
        0.000017
                    0.000655
                                 0.02560
                                              1.0000
           Fit Statistics
-2 Res Log Likelihood
                                366.7
                                          The -2LL is not smaller than the random linear time model, so adding
AIC (smaller is better)
                                376.7
AICC (smaller is better)
                                377.4
                                          an AR1 correlation to the R matrix does not improve model fit.
BIC (smaller is better)
                                382.8
TITLE1 "Random Linear Time Model + TOEP2 R Matrix";
PROC MIXED DATA=example5 COVTEST NOITPRINT NOCLPRINT METHOD=REML;
       CLASS IDnum wave;
       MODEL outcome = time / SOLUTION DDFM=Satterthwaite;
       RANDOM INTERCEPT time / G GCORR V VCORR TYPE=UN SUBJECT=IDnum;
       REPEATED wave / R RCORR TYPE=TOEP(2) SUBJECT=IDnum;
RUN;
           Estimated R Matrix for IDnum 1
 Row
            Co11
                        Co12
                                    Co13
                                                Co14
  1
          0.7127
                     0.01259
   2
         0.01259
                     0.7127
                                 0.01259
                     0.01259
                                             0.01259
   3
                                  0.7127
                                 0.01259
                                              0.7127
   4
     Estimated R Correlation Matrix for IDnum 1
 Row
            Col1
                        Co12
                                    Co13
                                                Co14
          1.0000
                     0.01766
   1
  2
         0.01766
                     1.0000
                                 0.01766
   3
                     0.01766
                                 1.0000
                                             0.01766
                                              1.0000
   4
                                 0.01766
           Fit Statistics
-2 Res Log Likelihood
                                366.7
                                          The -2LL is not smaller than the random linear time model, so adding a
AIC (smaller is better)
                                376.7
AICC (smaller is better)
                                377.4
                                          lag-1 covariance to the R matrix does not improve model fit, either.
BIC (smaller is better)
                                382.8
```