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Lecture Outline

■ Latent Class Analysis (LCA)

◆ Underlying theory (general contexts)

◆ Example analysis (and how to get estimates)

◆ Interpretation of model parameters

◆ Investigating model fit

■ Extensions of the Technique:

◆ Latent Profile Analysis (LPA)
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Clusters Versus Classes

■ When a researcher mentions they are going to be using cluster analysis, they
are most likely referring to one of the following:

◆ K-means clustering

◆ Hierarchical clustering using distance methods

◆ Discriminant analysis

◆ Taxometrics

■ Much less often, latent class analysis is included in the group

◆ Although it too is useful for detecting clusters of observations

■ For today’s lecture, we will consider clusters to be synonymous with classes
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LCA Versus Other Methods

■ Although I am using the terms classes and clusters synonymously, the
general approach of LCA differs from that of the other methods previously
discussed

■ LCA is a model-based method for clustering (or classification)

◆ LCA fits a statistical model to the data in an attempt to determine classes

■ The other methods listed on the previous slide do not explicitly state a
statistical model

■ By being model based, we are making very explicit assumptions about our
data

◆ Assumptions that can be tested
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Latent Class Analysis
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LCA Introduction

■ Latent class models are commonly attributed to Lazarsfeld and Henry (1968)

■ The final number of classes is not usually predetermined prior to analysis
with LCA

◆ The number of classes is determined through comparison of posterior fit
statistics

◆ The characteristics of each class is also determined following the analysis

◆ Similar to K-means and hierarchical clustering techniques in this respect
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Variable Types Used in LCA

■ As it was originally conceived, LCA is an analysis that uses:

◆ A set of binary-outcome variables - values coded as zero or one Examples
include:

■ Test items - scored correct or incorrect

■ True/false questions

■ Gender

■ Anything else that has two possible outcomes
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LCA Process

■ For a specified number of classes, LCA attempts to:

◆ For each class, estimate the probability that each variable is equal to one

◆ Estimate the probability that each observation falls into each class

■ For each observation, the sum of these probabilities across classes
equals one

■ This is different from K-means where an observation is a member of a
class with certainty

◆ Across all observations, estimate the probability that any observation falls
into a class
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LCA Estimation

■ Estimation of LCA model parameters can be more complicated than other
clustering methods:

◆ In hierarchical clustering, a search process is used with new distance
matrices being created for each step

◆ K-means uses more of a brute-force approach - trying multiple random
starting points then shifting cases between the different clusters until each
is no longer shifted

◆ Both methods relied on distance metrics to find clustering solutions

■ LCA estimation uses distributional assumptions to find classes

■ The distributional assumptions provide the measure of "distance" in LCA
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LCA Distributional Assumptions

■ Because (for today) we have discussed LCA with binary-outcome variables,
the distributional assumptions of LCA must use a binary-outcome distribution

■ Within each latent class, the variables are assumed to:

◆ Be independent

◆ Be distributed marginally as Bernoulli:

■ The Bernoulli distribution states:

f(xi) = (πi)
xi (1 − πi)

(1−xi)

■ The Bernoulli distribution is a simple distribution for a single event - like
flipping a coin
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Bernoulli Distribution Illustration

■ To illustrate the Bernoulli distribution (and statistical likelihoods in general),
consider the following example

■ To illustrate the Bernoulli distribution, consider the result of the Michigan /
Illinois football game as a binary-response item, X .

◆ Let’s say X = 1 if Illinois wins, and X = 0 if Michigan wins

◆ My prediction is that Illinois has about an 87% chance of winning the
game.

◆ So, π = 0.87.

■ Likewise, P (X = 1) = 0.87 and P (X = 0) = 0.13.
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Bernoulli Distribution Illustration

■ The likelihood function for X looks similar:

■ If X = 1, the likelihood is:

f(xi = 1) = (0.87)1 (1 − 0.87)(1−1) = 0.87

■ If X = 0, the likelihood is:

f(xi = 0) = (0.87)1 (1 − 0.87)(1−0) = 0.13

■ This example shows you how the likelihood function of a statistical
distribution gives you the likelihood of an event occurring

■ In the case of discrete-outcome variables, the likelihood of an event is
synonymous with the probability of the event occurring
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Independent Bernoulli Variables

■ To consider what independence of Bernoulli variables means, let’s consider
the another game this season: Michigan v. Ohio State

■ Let’s say we predict Michigan has a 97% chance of winning (or π2 = 0.97).

■ By assumption of independence of games, the probability of both Illinois and
Michigan wining their games would be the product of the probability of
winning each game separately:

P (X1 = 1, X2 = 1) = π1π2 = 0.87 × 0.97 = 0.84

■ More generally, we can express the likelihood of any set of occurrences by:

P (X1 = x1, X2 = x2, . . . , XJ = xJ) =
J
∏

j=1

π
xj

j (1 − πj)
(1−xj)
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Finite Mixture Models

■ LCA models are special cases of more general models called Finite Mixture
Models

■ A finite mixture model expresses the distribution of a set of outcome
variables, X, as a function of the sum of weighted distribution likelihoods:

f(X) =
G
∑

g=1

ηgf(X|g)

■ We are now ready to construct the LCA model likelihood

■ Here, we say that the conditional distribution of X given g is a sequence of
independent Bernoulli variables
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Latent Class Analysis as a FMM

A latent class model for the response vector of J variables (j = 1, . . . , J) with C
classes (c = 1, . . . , C):

f(xi) =
C
∑

c=1

ηc

J
∏

j=1

π
xij

jc (1 − πjc)
1−xij

■ ηc is the probability that any individual is a member of class c (must sum to
one)

■ xij is the observed response of individual i to item j

■ πjc is the probability of a positive response to item j from an individual from
class c
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LCA Local Independence

■ As shown in the LCA distributional form, LCA assumes all Bernoulli variables
are independent given a class

◆ This assumption is called Local Independence

◆ It is also present in many other latent variable modeling techniques:

■ Item response theory

■ Factor analysis (with uncorrelated errors)

■ What is implied is that any association between observed variables is
accounted for only by the presence of the latent class

◆ Essentially, this is saying that the latent class is the reason that variables
are correlated



PSYC 943: Lecture 23 Slide 17 of 76

Estimation Process

■ Successfully applying an LCA model to data involves the resolution to two
key questions:

1. How many classes are present?

2. What does each class represent?

■ The answer to the first question comes from fitting LCA models with differing
numbers of classes, then choosing the model with the best fit (to be defined
later)

■ The answer to the second question comes from inspecting the LCA model
parameters of the solution that was deemed to have fit best
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LCA Estimation Software

■ There are several programs that exist that can estimate LCA models

■ The package to be used today will be Mplus (with the Mixture add-on)

◆ The full version of Mplus is very useful for many statistical techniques.

■ Other packages also exist:

◆ Latent Gold

◆ A user-developed procedure in SAS (proc lca)
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LCA Example #1
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LCA Example #1

■ To illustrate the process of LCA,
we will use the example presented
in Bartholomew and Knott (p. 142)

■ The data are from a four-item test
analyzed with an LCA by
Macready and Dayton (1977)

■ The test data used by Macready
and Dayton were items from a
math test

■ Ultimately, Macready and Dayton wanted to see if examinees could be
placed into two groups:

◆ Those who had mastered the material

◆ Those who had not mastered the material
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LCA Example #1

■ Several considerations will keep us from assessing the number of classes in
Macready and Dayton’s data:

◆ We only have four items

◆ Macready and Dayton hypothesized two distinct classes: masters and
non-masters

■ For these reasons, we will only fit the two-class model and interpret the LCA
model parameter estimates
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Mplus Input

TITLE: LCA of Macready and Dayton’s data (1977).
Two classes.

DATA: FILE IS mddata.dat;
VARIABLE: NAMES ARE u1-u4;

CLASSES = c(2);
CATEGORICAL = u1-u4;

ANALYSIS: TYPE = MIXTURE;
STARTS = 100 100;

OUTPUT: TECH1 TECH10;
PLOT: TYPE=PLOT3;

SERIES IS u1(1) u2(2) u3(3) u4(4);
SAVEDATA: FORMAT IS f10.5;

FILE IS examinee_ests.dat;
SAVE = CPROBABILITIES;
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LCA Parameter Information Types

■ Recall, we have three pieces of information we can gain from an LCA:

◆ Sample information - proportion of people in each class (ηc)

◆ Item information - probability of correct response for each item from
examinees from each class (πjc)

◆ Examinee information - posterior probability of class membership for each
examinee in each class (αic)
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Estimates of ηc

From Mplus:
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL

Latent
Classes

1 83.29149 0.58656
2 58.70851 0.41344

ηc are proportions in far right column
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Estimates of πjc

From Mplus:
RESULTS IN PROBABILITY SCALE
Latent Class 1
U1 Category 2 0.753 0.060
U2 Category 2 0.780 0.069
U3 Category 2 0.432 0.058
U4 Category 2 0.708 0.063

Latent Class 2
U1 Category 2 0.209 0.066
U2 Category 2 0.068 0.056
U3 Category 2 0.018 0.037
U4 Category 2 0.052 0.057

πjc are proportions in left column, followed by asymptotic standard errors



PSYC 943: Lecture 23 Slide 26 of 76

Interpreting Classes

■ After the analysis is finished, we
need to examine the item
probabilities to gain information
about the characteristics of the
classes

■ An easy way to do this is to look at
a chart of the item response
probabilities by class

■ Here, we would say that Class 1 represents students who have mastered the
material on the test

■ We would say that Class 2 represents students who have not mastered the
material on the test
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Assessing Model Fit
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Assessing Model Fit

■ As with other statistical techniques, there is no one best way to assess the fit
of an LCA model

■ Techniques typically used can put into several general categories:

◆ Model based hypothesis tests (absolute fit)

◆ Information criteria

◆ Measures based on distributional characteristics

◆ Entropy
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Model Based Measures

■ Recall the standard latent class model: Using some notation of Bartholomew
and Knott, a latent class model for the response vector of p variables
(i = 1, . . . , p) with K classes (j = 1, . . . , K):

f(xi) =
K
∑

j=1

ηj

p
∏

i=1

πxi

ij (1 − πij)
1−xi

■ Model based measures of fit revolve around the model function listed above

■ With just the function above, we can compute the probability of any given
response pattern

■ Mplus gives this information using the TECH10 output option
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Model Chi-squared Test

■ The χ2 test compares the sets of response patterns that were observed with
the set of response patterns expected under the model

■ To form the χ2 test, one must first compute the probability of each response
pattern using the latent class model equation displayed on the last slide

■ The hypothesis tested is that the observed frequency is equal to the
expected frequency

■ If the test has a low p-value, the model is said to not fit

■ To demonstrate the model χ2 test, let’s consider the results of the latent class
model fit to the data from our running example (from Macready and Dayton,
1977)
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Chi-squared Test Example

Class Probabilities:
Class Probability
1 0.587
2 0.413

Item Parameters
class: 1
item prob SE(prob)
1 0.753 0.051
2 0.780 0.051
3 0.432 0.056
4 0.708 0.054

class: 2
item prob SE(prob)
1 0.209 0.060
2 0.068 0.048
3 0.018 0.029
4 0.052 0.044
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Chi-squared Test Example

■ To begin, compute the probability of observing the pattern [1111]...

■ Then, to find the expected frequency, multiply that probability by the number
of observations in the sample

■ Repeat that process for all cells...

■ The compute χ2
p =

∑

r

(Or − Er)
2

Er
, where r represents each response

pattern

■ The degrees of freedom are equal to the number of response patterns minus
model parameters minus one

■ Then find the p-value, and decide if the model fits
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Chi-squared from Mplus
RESPONSE PATTERN FREQUENCIES AND CHI-SQUARE CONTRIBUTIONS

Response Frequency Standard Chi-square Contribution

Pattern Observed Estimated Residual Pearson Loglikelihood Deleted

1 41.00 41.04 0.01 0.00 -0.08

2 13.00 12.91 0.03 0.00 0.18

3 6.00 5.62 0.16 0.03 0.79

4 7.00 8.92 0.66 0.41 -3.39

5 1.00 1.30 0.27 0.07 -0.53

6 3.00 1.93 0.77 0.59 2.63

7 2.00 2.08 0.05 0.00 -0.15

8 7.00 6.19 0.33 0.10 1.71

9 4.00 4.04 0.02 0.00 -0.07

10 6.00 6.13 0.05 0.00 -0.26

11 5.00 6.61 0.64 0.39 -2.79

12 23.00 19.74 0.79 0.54 7.04

13 4.00 1.42 2.18 4.70 8.29

14 1.00 4.22 1.59 2.46 -2.88

15 4.00 4.90 0.41 0.16 -1.62

16 15.00 14.95 0.01 0.00 0.09
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Likelihood Ratio Chi-squared

■ The likelihood ratio Chi-square is a variant of the Pearson Chi-squared test,
but still uses the observed and expected frequencies for each cell

■ The formula for this test is:

G = 2
∑

r

Or ln

(

Or

Er

)

■ The degrees of freedom are still the same as the Pearson Chi-squared test,
however
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Tests from Mplus

Chi-Square Test of Model Fit for the Binary
and Ordered Categorical (Ordinal) Outcomes

Pearson Chi-Square

Value 9.459
Degrees of Freedom 6
P-Value 0.1494

Likelihood Ratio Chi-Square

Value 8.966
Degrees of Freedom 6
P-Value 0.1755
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Chi-squared Problems

■ The Chi-square test is reasonable for situations where the sample size is
large, and the number of variables is small

◆ If there are too many cells where the observed frequency is small (or
zero), the test is not valid

■ Note that the total number of response patterns in an LCA is 2J , where J is
the total number of variables

■ For our example, we had four variables, so there were 16 possible response
patterns

■ If we had 20 variables, there would be a total of 1,048,576

◆ Think about the number of observations you would have to have if you
were to observe at least one person with each response pattern

◆ Now think about if the items were highly associated (you would need even
more people)



PSYC 943: Lecture 23 Slide 37 of 76

Model Comparison

■ So, if model-based Chi-squared tests are valid only for a limited set of
analyses, what else can be done?

■ One thing is to look at comparative measures of model fit

■ Such measures will allow the user to compare the fit of one solution (say two
classes) to the fit of another (say three classes)

■ Note that such measures are only valid as a means of relative model fit -
what do these measures become if the model fits perfectly?
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Log Likelihood

■ Prior to discussing anything, let’s look at the log-likelihood function, taken
across all the observations in our data set

■ The log likelihood serves as the basis for the AIC and BIC, and is what is
maximized by the estimation algorithm

■ The likelihood function is the model formulation across the joint distribution of
the data (all observations):

L(xi) =
N
∏

k=1





K
∑

j=1

ηj

p
∏

i=1

πxki

ij (1 − πij)
1−xki




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Log Likelihood

■ The log likelihood function is the log of the model formulation across the joint
distribution of the data (all observations):

LogL(xi) = log





N
∏

k=1





K
∑

j=1

ηj

p
∏

i=1

πxki

ij (1 − πij)
1−xki









LogL(xi) =
N
∑

k=1

log





K
∑

j=1

ηj

p
∏

i=1

πxki

ij (1 − πij)
1−xki





■ Here, the log function taken is typically base e - the natural log

■ The log likelihood is a function of the observed responses for each person
and the model parameters
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Information Criteria

■ The Akaike Information Criterion (AIC) is a measure of the goodness of fit of
a model that considers the number of model parameters (q)

AIC = 2q − 2 log L

■ Schwarz’s Information Criterion (also called the Bayesian Information
Criterion or the Schwarz-Bayesian Information Criterion) is a measure of the
goodness of fit of a model that considers the number of parameters (q) and
the number of observations (N):

BIC = q log(N) − 2 log L
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Fit from Mplus

TESTS OF MODEL FIT

Loglikelihood

H0 Value -331.764

Information Criteria

Number of Free Parameters 9
Akaike (AIC) 681.527
Bayesian (BIC) 708.130
Sample-Size Adjusted BIC 679.653
(n* = (n + 2) / 24)

Entropy 0.754
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Information Criteria

■ When considering which model “fits” the data best, the model with the lowest
AIC or BIC should be considered

■ Although AIC and BIC are based on good statistical theory, neither is a gold
standard for assessing which model should be chosen

■ Furthermore, neither will tell you, overall, if your model estimates bear any
decent resemblance to your data

■ You could be choosing between two (equally) poor models - other measures
are needed
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Distributional Measures of Model Fit

■ The model-based Chi-squared provided a measure of model fit, while narrow
in the times it could be applied, that tried to map what the model said the
data looked like to what the data actually looked like

■ The same concept lies behind the ideas of distributional measures of model
fit - use the parameters of the model to “predict” what the data should look
like

■ In this case, measures that are easy to attain are measures that look at:

◆ Each variable marginally - the mean (or proportion)

◆ The bivariate distribution of each pair of variables - contingency tables (for
categorical variables), correlation matrices, or covariance matrices
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Marginal Measures

■ For each item, the model-predicted mean of the item (proportion of people
responding with a value of one) is given by:

ˆ̄Xi = Ê(Xj) =

M
∑

xj=0

P̂ (Xi = xi)xi =

J
∑

j=1

η̂j × π̂ij

■ Across all items, you can then form an aggregate measure of model fit by
comparing the observed mean of the item to that found under the model,
such as the root mean squared error:

RMSE =

√

∑I
i=1(

ˆ̄Xi − X̄i)2

I

■ Often, there is not much difference between observed and predicted mean
(depending on the model, the fit will always be perfect)
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Marginal Measures from Mplus

From Mplus (using TECH10):
UNIVARIATE MODEL FIT INFORMATION

Estimated Probabilities
Variable H1 H0 Standard Residual
U1
Category 1 0.472 0.472 0.000
Category 2 0.528 0.528 0.000

U2
Category 1 0.514 0.514 0.000
Category 2 0.486 0.486 0.000

U3
Category 1 0.739 0.739 0.000
Category 2 0.261 0.261 0.000

U4
Category 1 0.563 0.563 0.000
Category 2 0.437 0.437 0.000
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Bivariate Measures

■ For each pair of items (say a and b, the model-predicted probability of both
being one is given in the same way:

P̂ (Xa = 1, Xb = 1) =

J
∑

j=1

η̂j × π̂aj × π̂bj

■ Given the marginal means, you can now form a 2 x 2 table of the probability
of finding a given pair of responses to variable a and b:

a
b 0 1

0 1 − P̂ (Xb = 1)

1 P̂ (Xa = 1, Xb = 1) P̂ (Xb = 1)

1 − P̂ (Xa = 1) P̂ (Xa = 1) 1
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Bivariate Measures

■ Given the model-predicted contingency table (on the last slide) for every pair
of items, you can then form a measure of association for the items

■ There are multiple ways to summarize association in a contingency table

■ Depending on your preference, you could use:

◆ Pearson correlation

◆ Tetrachoric correlation

◆ Cohen’s kappa.

■ After that, you could then summarize the discrepancy between what your
model predicts and what you have observed in the data

◆ Such as the RMSE, MAD, or BIAS.
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Bivariate Measures from Mplus

From Mplus (using TECH10):
BIVARIATE MODEL FIT INFORMATION

Estimated Probabilities

Variable Variable H1 H0 Standard Residual

U1 U2

Category 1 Category 1 0.352 0.337 0.391

Category 1 Category 2 0.120 0.135 -0.540

Category 2 Category 1 0.162 0.177 -0.483

Category 2 Category 2 0.366 0.351 0.387
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Entropy

■ The entropy of a model is defined to be a measure of classification
uncertainty

■ To define the entropy of a model, we must first look at the posterior
probability of class membership, let’s call this α̂ic (notation borrowed from
Dias and Vermunt, date unknown - online document)

■ Here, α̂ic is the estimated probability that observation i is a member of class
c

■ The entropy of a model is defined as:

EN(α) = −
N
∑

i=1

J
∑

j=1

αij log αij
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Relative Entropy

■ The entropy equation on the last slide is bounded from [0,∞), with higher
values indicated a larger amount of uncertainty in classification

■ Mplus reports the relative entropy of a model, which is a rescaled version of
entropy:

E = 1 −
EN(α)

N log J

■ The relative entropy is defined on [0, 1], with values near one indicating high
certainty in classification and values near zero indicating low certainty
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Fit from Mplus

TESTS OF MODEL FIT

Loglikelihood

H0 Value -331.764

Information Criteria

Number of Free Parameters 9
Akaike (AIC) 681.527
Bayesian (BIC) 708.130
Sample-Size Adjusted BIC 679.653
(n* = (n + 2) / 24)

Entropy 0.754
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Latent Class Analysis: Wrap Up
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LCA Limitations

■ LCA has limitations which can make its general application difficult:

◆ Classes not known prior to analysis

◆ Class characteristics not know until after analysis

■ Both of these problems are related to LCA being an exploratory procedure for
understanding data

■ Diagnostic Classification Models can be thought of as one type of a
confirmatory LCA

◆ By placing constraints on the class item probabilities and specifying what
our classes mean prior to analysis
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LCA Summary

■ Latent class analysis is a model-based technique for finding clusters in
binary (categorical) data

■ Each of the variables is assumed to:

◆ Have a Bernoulli distribution

◆ Be independent given class

■ Additional reading: Lazarsfeld and Henry (1968). Latent structure analysis
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Latent Profile Analysis
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LPA Introduction

■ Latent profile models are commonly attributed to Lazarsfeld and Henry
(1968)

■ As it was originally conceived, LPA is an analysis that uses:

◆ A set of continuous (metrical) variables - values allowed to range
anywhere on the real number line

■ The number of classes (an integer ranging from two through...) must be
specified prior to analysis
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LPA Process

■ For a specified number of classes, LPA attempts to:

◆ For each class, estimate the mean and variance for each variable

◆ Estimate the probability that each observation falls into each class

■ For each observation, the sum of these probabilities across classes
equals one

◆ Across all observations, estimate the probability that any observation falls
into a class
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LPA Distributional Assumptions

■ Because LPA works with continuous variables, the distributional assumptions
of LPA must use a continuous distribution

■ Within each latent class, the variables are assumed to:

◆ Be independent

◆ (Marginally) be distributed normal (or Gaussian):

■ For a single variable, the normal distribution function is:

f(xi) =
1

√

2πσ2
x

exp

(

−(xi − µx)2

σ2
x

)
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Joint Distribution

■ Because, conditional on class, we have normally distributed variables in LPA,
we could also phrase the likelihood as coming from a multivariate normal
distribution (MVN):

■ The next set of slides describes the MVN

■ What you must keep in mind is that our variables are set to be independent,
conditional on class, so the within class covariance matrix will be diagonal
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Multivariate Normal Distribution

■ The generalization of the well-known normal distribution to multiple variables
is called the multivariate normal distribution (MVN)

■ Many multivariate techniques rely on this distribution in some manner

■ Although real data may never come from a true MVN, the MVN provides a
robust approximation, and has many nice mathematical properties

■ Furthermore, because of the central limit theorem, many multivariate
statistics converge to the MVN distribution as the sample size increases
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MVN

■ The multivariate normal distribution function is:

f(x) =
1

(2π)p/2|Σ|1/2
e−(x−µ)Σ

−1

(x−µ)/2

■ The mean vector is µ.

■ The covariance matrix is Σ.

■ Standard notation for multivariate normal distributions is Np(µ,Σ).

■ Visualizing the MVN is difficult for more than two dimensions, so I will
demonstrate some plots with two variables - the bivariate normal distribution
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Bivariate Normal Plot #1
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Bivariate Normal Plot #1a
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Finite Mixture Models

■ Recall from last time that we stated that a finite mixture model expresses the
distribution of X as a function of the sum of weighted distribution likelihoods:

f(X) =
G
∑

g=1

ηgf(X|g)

■ We are now ready to construct the LPA model likelihood

■ Here, we say that the conditional distribution of X given g is a sequence of
independent normally distributed variables
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Latent Profile Analysis as a FMM

A latent profile model for the response vector of J variables (j = 1, . . . , J) with
C classes (c = 1, . . . , C):

f(xi) =
C
∑

c=1

ηc

J
∏

j=1

1
√

2πσ2
jc

exp

(

−(xi − µjc)
2

σ2
jc

)

■ ηc is the probability that any individual is a member of class c (must sum to
one)

■ xij is the observed response to variable j from observation i

■ µjc is the mean for variable j for an individual from class c

■ σ2
jc is the variance for variable j for an individual from class c
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LPA Example

■ To illustrate the process of LPA, consider an example using Fisher’s Iris data

◆ From CMU’s DASL:
The Iris dataset was introduced by R. A. Fisher as an example for
discriminant analysis. The data report four characteristics (sepal width,
sepal length, pedal width and pedal length) of three species of Iris
flower.

■ This time we will try fitting multiple classes to see if our results change from
time to time, and how the fit statistics look for each type of solution

■ Specifically, we will compare a two-class solution to a three-class solution
(the correct one) and a 4-class solution
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LPA Example



title:
2-Class Latent Profile Analysis
of Fisher’s Iris Data;

data:
file=iris.dat;

variable:
names=x1-x4;
classes=c(2);

analysis:
type=mixture;

model:
OUTPUT:

TECH1 TECH5 TECH10;
PLOT:

TYPE=PLOT3;
SERIES IS x1(1) x2(2) x3(3) x4(4);

SAVEDATA:
FILE IS myfile2c.dat;
SAVE = CPROBABILITIES;

67-1
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Model Results

■ The table below shows the results of our models in for each class solution:

Model Parameters Log L AIC BIC Entropy

2-class 13 -488.915 1003.830 1042.968 0.991
3-class 18 -361.426 758.851 813.042 0.957
4-class 23 -310.117 666.234 735.479 0.945

■ Based on AIC and BIC, we would choose the 4-class solution (and probably
should try a 5-class model)

■ Note that by adding multiple starting points, the 3-class and 4-class solutions
started to demonstrate problems with:

◆ Convergence in some iterations

◆ Multiple modes - something else to worry about!
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Model Results

■ The use of information criteria in this example highlights some of the
problems with using such methods

■ The data came from three distinct flowers

■ The analysis suggested having more than three groups extracted

■ Such problems are prevalent with many FMM techniques

■ This highlights the need for use of validation techniques for any result
obtained using these methods

■ We will reject the 4-class solution and examine the 3-class solution because
of our prior knowledge about the flowers
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Model Results

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED
THE ESTIMATED MODEL

Latent
Classes

1 50.00000 0.33333
2 54.88812 0.36592
3 45.11188 0.30075
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Model Results

Latent Class 1

Means

X1 5.006 0.049 101.442

X2 3.428 0.053 64.595

X3 1.462 0.024 60.132

X4 0.246 0.015 16.673

Latent Class 2

Means

X1 5.920 0.079 75.391

X2 2.748 0.051 54.285

X3 4.327 0.122 35.533

X4 1.352 0.071 18.936

Latent Class 3

Means

X1 6.678 0.150 44.464

X2 3.023 0.054 55.527

X3 5.611 0.155 36.164

X4 2.070 0.062 33.501

Variances

X1 0.236 0.030 7.957

X2 0.107 0.014 7.643

X3 0.187 0.027 6.862

X4 0.038 0.007 5.083
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Model Results
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LPA Summary

■ Latent profile analysis is a model-based technique for finding clusters in
continuous data

■ Each of the variables is assumed to be:

◆ Have a normal distribution

◆ Be independent given class

■ It is the continuous-distribution analog to LCA



PSYC 943: Lecture 23 Slide 74 of 76

Concluding Remarks
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Concluding Remarks

■ Many extensions of the models presented today can be found in recent
empirical research articles

■ Other methods include:

◆ Growth mixture models

■ Methods for detecting groups that have differing growth trajectories

◆ Diagnostic classification models

■ Methods for confirmatory analysis with classes

■ Used to diagnose psychological disorders and knowledge states of
students

◆ General Finite Mixture Models

■ Quite literally, any statistical distribution can be made into a mixture
model
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Concluding Remarks

■ Today was a whirlwind tour of model-based clustering methods

■ The methods described today are useful tools for the detecting of clusters
within data

■ Many of the ways to detect clusters can lead to problematic conclusions

◆ Especially if information criteria are used to assess model fit

◆ This speaks to the need for validation

■ Proponents of the method say such techniques gives researchers the
potential for very powerful analysis conclusions

■ I say these techniques suffer from the same issues that other exploratory
techniques suffer from - they are prone to problems and can lead to
conclusions which are spurious at best and dangerous at worst
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