Fun with Mediation

PSYC 943 (930): Fundamentals of Multivariate Modeling

Lecture 20: November 9, 2012

Today's Lecture

- A brief intro to mediation:
 - \rightarrow Terminology \rightarrow Mediation = regression with new words
 - > Testing significance of indirect effects as evidence for mediation
- Example from last time:
 - > Multiple indirect effects in predicting math self-efficacy
- Complications: when mediators or outcomes are not normal
 - > Mediation with other distributions
 - > Robust ML to the rescue?
 - > Example predicting two binary outcomes

INTRODUCTION TO MEDIATION

Terminology: Mediation ≠ Moderation

Mediational model:

- X causes M, M causes Y
- M is an outcome of X but a predictor of Y

Moderator model:

M adjusts the size of X→Y relationship

M is a predictor of Y,
 and is correlated with X

 Moderation is represented by an interaction effect

XM

M

This figure does NOT depict an estimable model.

This is what is actually implied by above model.

Terminology: Mediation Effects

c = uncontrolled X to Y path
 (Y on X;)

The big question in mediation:

- Phrased as usual regression

 Is the effect of X predicting Y still significant after controlling for M?
- Phrased as "mediation" →
 Is the effect of X predicting Y significantly mediated by M?
- Phrased either way, is $c \neq c'$?

Direct Effects:

- a = X to M path (M on X;)
- b = M to Y path (Y on M;)
- c' = X to Y path controlled for M (Y on X;)
- a * b = indirect effect of X to Y
- The estimates for c c' and
 a * b will be equivalent in MVN
 observed variables (if same N)

Old versus New Rules for Mediation

- Baron & Kenny (1986, JPSP) rules were standard for a long time...
 - > Simulation studies have found these rules to be way too conservative
- Old rule that can now be broken:
 - > X must predict Y in the first place (c must be initially significant)
 - > When not? Differential power for paths, suppressor effects of mediators
 - \triangleright Mediation is really about whether $c \neq c'$, not whether each is significant
- Old rules that pry still hold:
 - > X must predict M (a must be significant)
 - M must predict Y (b must be significant)

- Need to obtain a SE in order to test if $\mathbf{c} \mathbf{c}' = \mathbf{0}$ or if $\mathbf{a} * \mathbf{b} = \mathbf{0}$
 - > For $c c' \rightarrow$ "difference in coefficients SE"
 - \rightarrow For $\alpha * b \rightarrow$ "product of coefficients SE" \rightarrow we'll start here
- Use "multivariate delta method" (second-derivative approximation shown here) to get SE for product of two random variables a * b

>
$$SE_{a*b} = \sqrt{a^2 SE_b^2 + b^2 SE_a^2 + SE_a^2 SE_b^2}$$

 \succ An equivalent formula to calculate SE_{a*b} that may have less rounding error

because it avoids squaring
$${\it a}$$
 and ${\it b}$ is $SE_{a*b}={ab\sqrt{t_a^2+t_b^2+1}\over t_at_b}$

> This is known as the "Sobel test" and can be calculated by hand using the results of a simultaneous path model or separate regression models, and is also provided through MODEL INDIRECT or MODEL CONSTRAINT in Mplus

- One problem: we *shouldn't* use this SE for usual significance test
 - > So, nope: $t_{indirect} = \frac{a*b}{SE_{a*b}}$ or $95\% \ CI = a*b \pm 1.96*SE_{a*b}$
 - \triangleright Why? Although the estimates for a and b will be normally distributed, the estimate of their product won't be, especially if a and b are near 0

- So what do we do? Another idea based on same premise:
 - For $a*b \rightarrow$ find "distribution of the product SE" $\rightarrow z_a*z_b = \frac{a}{SE_a}*\frac{b}{SE_b}$ in which the sampling distribution does not have a tractable form, but tables of critical values have been derived through simulation for the single mediator case (but may not generalize to more complex models)
 - > Implemented in PRODCLIN program for use with SAS, SPSS, and R
- A better solution: bootstrap the data to find the empirical SE and asymmetric CI for the indirect effect
 - \triangleright Bootstrap = draw n samples with replacement from your **data**, re-estimate mediation model and calculate a*b within each bootstrap sample
 - \triangleright Point estimate of a * b is mean or median over n bootstrap samples
 - $\gt SE_{a*b}$ is standard deviation of estimated a*b over n bootstrap samples
 - 95% CI can be computed as estimates at the 2.5 and 97.5 percentiles
 - \triangleright Typically at least 500 or 1000 n bootstrap samples are used

- There are multiple kinds of bootstrap CIs possible in testing the significance of the a*b indirect effect within MVN data
 - Regular bootstrap CI = "percentile" (as just described)
 - In Mplus, OUTPUT: CINTERVAL(bootstrap);
 - > Bias-corrected bootstrap CI = shifts CIs so that median is sample estimate
 - In Mplus, OUTPUT: CINTERVAL(BCbootstrap); *** Supposed to be best one
 - Accelerated bootstrap CI = ???
 - Not given in Mplus (as far as I know)
- For not simply MVN data (i.e., non-normal mediators or outcomes, multilevel data), a different bootstrap approach can be used
 - ➤ Parametric, Monte Carlo, or empirical-M bootstrap →
 Draw repeatedly from a and b parameter distributions instead of the data, then compute point estimates, SE, and CIs from those distributions
 - > See http://www.quantpsy.org/medn.htm for online calculators

PREVIOUS EXAMPLE: INDIRECT EFFECTS

Final Example Model: Examining Mediation Effects

MSE Indirect Effects, Isolated

Two potential pathways (indirect effects)
from high school math and gender through
college math to predict math self-efficacy

```
MODEL INDIRECT:
   mse IND hsl;
   mse IND gender;

OUTPUT:
   STDYX STDY
   CINTERVAL;
```

MSE *Direct* Effects Solutions using ML

MODEL RESULTS

o-Tailed
P-Value
0.006
0.019
0.000
0.000
0.000

MSE Indirect Effects Solutions using ML: Sobel Test

TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

					Two-Talled
		Estimate	S.E.	Est./S.E.	P-Value
Effe	cts from HSL to	MSE			
То	tal	4.439	0.437	10.159	0.000
Sp	ecific indirect				
	MSE CC HSL	0.281	0.121	2.324	0.020
Effe	cts from GENDER	to MSE			
То	tal	3.576	1.189	3.008	0.003
Sp	ecific indirect				
	MSE CC GENDER	-0.707	0.329	-2.148	0.032

Indirect Effects: a*b

HSL = 0.707 * 0.398 = 0.281 Gender = -1.779 * 0.398 = -0.707

Total Effects: direct + indirect

HSL = 4.158 + 0.281 = 4.439Gender = 4.238 + -0.707 = 3.576

Conclusion:

Dolier_over

The effects of high school math and gender on college math are *partially** responsible for the effects of high school math and gender on math self-efficacy.

* See Preacher & Kelly (2011) for a discussion of how to (and how not to) assess mediation effect size

MSE Indirect Effects: Bootstrapping to Double-Check

Normal-distribution 95% CI for indirect effects:

- HSL: Est = 0.281, CI = 0.044 to 0.518
- Gender: Est = -0.707, Cl = -1.352 to -0.062
- Let's make sure the results are robust to an assumption of a normal distribution for the indirect effect by bootstrapping the data ->

```
ANALYSIS:
    ESTIMATOR = ML;
    BOOTSTRAP = 1000;
MODEL:
         ON hsl gender;
    CC
         ON hsl gender cc;
    mse
         ON hsl cc mse;
    msc
    use
         ON mse;
    perf ON mse msc;
    hsl;
    perf WITH use@0;
    msc WITH use;
MODEL INDIRECT:
    mse IND hsl;
    mse IND gender;
OUTPUT:
    STDYX STDY
```

CINTERVAL(BCBOOTSTRAP);

MSE Direct Effects Solutions: Regular ML vs. Bootstrap

MODEL RESULTS UNDER REGULAR ML

					Two-Tailed
		Estimate	S.E.	Est./S.E.	P-Value
CC	ON				
HSL		0.707	0.255	2.775	0.006
GEN	DER	-1.779	0.686	-2.595	0.019
MSE	ON				
HSL		4.158	0.434	9.589	0.000
GEN	DER	4.283	1.180	3.631	0.000
CC		0.398	0.101	3.937	0.000

MODEL RESULTS USING BOOTSTRAPPING

					Two-Tailed
		Estimate	S.E.	Est./S.E.	P-Value
CC	ON				
HSL		0.707	0.246	2.871	0.004
GENI	DER	-1.779	0.695	-2.558	0.011
MSE	ON				
HSL		4.158	0.412	10.086	0.000
GENI	DER	4.283	1.130	3.792	0.000
CC		0.398	0.109	3.645	0.000

MSE Indirect Effects Solutions: Regular ML vs. Bootstrap

TOTAL, TOTAL INDIR	ECT, SPECIFIC Estimate		F, AND DIREC	Two-Tailed P-Value	Normal distribution
Effects from HSL t	o MSE				95% CI for indirect effects:
Total	4.439	0.437	10.159	0.000	
Specific indirec	t				HSL: CI = 0.281 ± 1.96*SE
MSE CC HSL	0.281	0.121	2.324	0.020	CI = $0.281 \pm 1.96^{\circ}$ SE
Effects from GENDE	R to MSE				
Total	3.576	1.189	3.008	0.003	Gender: -0.707 ± 1.96*SE
Specific indirec MSE CC GENDER	-0.707	0.329	-2.148	0.032	CI = -1.352 to -0.062
TOTAL, TOTAL INDIRE				Two-Tailed	
	Estimate		, AND DIRECT		Empirical distribution
TOTAL, TOTAL INDIRE	Estimate			Two-Tailed	
Effects from HSL to	Estimate MSE	S.E.	Est./S.E.	Two-Tailed P-Value	Empirical distribution
Effects from HSL to Total Specific indirect	Estimate MSE 4.439 0.281	S.E. 0.428	Est./S.E. 10.378	Two-Tailed P-Value 0.000	Empirical distribution 95% CI for indirect effects: HSL: CI = 0.098 to 0.597
Effects from HSL to Total Specific indirect MSE CC HSL	Estimate MSE 4.439 0.281	S.E. 0.428	Est./S.E. 10.378	Two-Tailed P-Value 0.000	Empirical distribution 95% CI for indirect effects: HSL: CI = 0.098 to 0.597
Effects from HSL to Total Specific indirect MSE CC HSL Effects from GENDER	Estimate MSE 4.439 0.281 to MSE	S.E. 0.428 0.119	Est./S.E. 10.378 2.352	Two-Tailed P-Value 0.000 0.019	Empirical distribution 95% CI for indirect effects: HSL: CI = 0.098 to 0.597 -0.316, +0.183 around Est

COMPLICATIONS

Mediation with Non-Normal Variables

- All the path models we've show you so far assume every variable in the likelihood* is multivariate normal
 - ➤ * In the likelihood → is predicted by something or has an estimated mean, variance, or covariance with another variable (i.e., the missing data trick)
 - > In reality, one may have non-normal (NN) mediators or outcomes...
- Estimation gets tricky, because there is no closed-form ML anymore
 - \rightarrow NN outcomes \rightarrow fit link function to Y, requires numeric integration
 - Becomes exponentially more complex with more non-normal variables
 - > NN mediators -> fit link function M, but estimation is even trickier
 - In Mplus, requires Monte Carlo integration (re-sampling approach)
- Interpretation gets tricky, because the paths are of different kinds
 - \rightarrow For example, X \rightarrow M \rightarrow binary Y: X \rightarrow regular M, M \rightarrow logit Y
 - \rightarrow For example, X \rightarrow binary M \rightarrow Y: X \rightarrow logit M, regular M \rightarrow Y
 - > Oh, and there are no standard absolute model fit statistics in ML (no observed covariance matrix to compare the model predictions to)

Robust Estimators for Not-Quite-Normal Variables

- In some cases it is clear that a link function is needed:
 - Binary or ordinal variables (fewer than 5 categories, usually)
- In other cases a link function might be preferable to use, but practically impossible to do in complex models
 - Count data or skewed continuous data
 - > Weighted least squares estimators are sometimes used in this case, but they assume MCAR and use only a second-order summary of the data
- For not-quite-normal data, robust ML may be a reasonable solution
 - > Still full-information ML (uses all data, not a summary thereof)
 - Corrects standard errors for multivariate non-normality

Robust ML for Non-Normal Data

- MLR in Mplus: ≈ Yuan-Bentler T₂ (permits MCAR or MAR missing)
 - > Same estimates and LL, corrected standard errors for all model parameters
- χ²-based fit statistics are adjusted based on an estimated scaling factor:
 - > Scaling factor = 1.000 = perfectly multivariate normal = same as ML
 - > Scaling factor > 1.000 = leptokurtosis (too-fat tails; fixes too big χ^2)
 - > Scaling factor < 1.000 = platykurtosis (too-thin tails; fixes too small χ^2)
- SEs computed with Huber-White 'sandwich' estimator → uses an information matrix from the variance of the partial first derivatives to correct the information matrix from the partial second derivatives
 - ➤ Leptokurtosis (too-fat tails) → increases information; fixes too small SEs
 - ➤ Platykurtosis (too-thin tails) → lowers information; fixes too big SEs
- In **SAS**: use "EMPIRICAL" option in PROC MIXED line
 - SEs are computed the same way but for fixed effects only, but can be unstable in unbalanced data, especially in small samples
 - > SAS does not provide the needed scaling factor to adjust -2 Δ LL test (not sure if this is a problem if you just use the fixed effect *p*-values)

Scaled Likelihood Ratio Test for use with MLR

- Likelihood ratio test has a few extra steps:
- 1. Calculate $-2\Delta LL = -2*(LL_{fewer} LL_{more})$
- 2. Calculate **difference scaling correction** =

$$\frac{(\#parms_{fewer}^*scale_{fewer}) - (\#parms_{more}^*scale_{more})}{(\#parms_{fewer}^* - \#parms_{more})}$$

- 3. Calculate rescaled difference = $-2\Delta LL$ / scaling correction
- Calculate Δdf = #parms_{more} #parms_{fewer}
- 5. Compare rescaled difference to χ^2 with df = Δ df
 - Add 1 parameter? LL_{diff} > 3.84, add 2: LL_{diff} > 5.99...
 - Absolute values of LL are meaningless (is relative fit only)
 - Process generalizes to many other kinds of models
- I built a spreadsheet to do this for you (see webpage)

EXAMPLE: PREDICTING BINARY OUTCOME

Hoffman & McDowd (2010, Psychology and Aging)

- Follow-up data from 114/152 persons from dissertation sample
 - > 91 reported no accident since then, 9 reported no-fault accident
 - > 14 reported at least partially-at-fault accident
 - > 14 reported a speeding ticket
 - > Tendency to limit driving (mean of 4 Likert items on 1-5 scale, 0 = 2)
 - Only 3 persons no longer drove
- No differences found between completers/non-completers in sex, age, visual impairment, UFOV, DriverScan, or simulator impairment
- Model: Predict accidents and speeding tickets (binary outcomes)
- Original analysis used ML with MonteCarlo Integration
 - ► I'll use MLR to demonstrate here → MVN then assumed for continuous mediators of simulator driving impairment and limiting driving

Path Model Predicting Driving Outcomes

Mplus Code for Direct and Indirect Effects


```
TITLE: Path Analysis Dissertation Follow-up
DATA:
       FILE = driver.dat;
VARTABLE:
! List of variables in data file
NAMES = PartID sex age75 cs 1 5 cs 3 cs 6
cs 12 cs 18 far near zufov1 zufov2 zufov3
Dscan lane da task crash stop speed time
simfac part visfac attfac limit4 ticket2
speed2 follow attr nacc2 jacc2 acc2;
! Variables to be analyzed in this model
USEVARIABLE = sex age75 visfac zufov1 zufov2
zufov3 Dscan simfac limit4 speed2 acc2;
! Missing data identifier
MISSING = .;
! Categorical outcomes
CATEGORICAL = acc2 speed2;
ANALYSIS: ! Estimation options
ESTIMATOR = MLR; INTEGRATION = MONTECARLO;
OUTPUT: STDYX;
```

MODEL:

```
simfac ON sex age75 visfac zufov1 zufov2 zufov3 Dscan (sim1-sim7);
limit4 ON sex age75 visfac zufov1 zufov2 zufov3 Dscan simfac (lim1-lim8);
acc2 ON sex age75 visfac zufov1 zufov2 zufov3 Dscan simfac limit4 (acc1-acc9);
speed2 ON sex age75 visfac zufov1 zufov2 zufov3 Dscan simfac limit4 (spd1-spd9);
```

```
MODEL CONSTRAINT: ! Like ESTIMATE in SAS

NEW(DStoAcc); ! List names of estimated effects on NEW

DStoAcc = sim7 * acc8; ! Indirect effect of Dscan --> Sim --> Acc
```

Mplus Output for Direct and Indirect Effects (Truncated)

MODEL FIT INFORMATION	
Number of Free Parameters	39
Loglikelihood	
H0 Value	-356.400
H0 Scaling Correction Factor	1.0066
for MLR	
Information Criteria	
Akaike (AIC)	790.799
Bayesian (BIC)	907.953
Sample-Size Adjusted BIC	784.529
(n* = (n + 2) / 24)	

Then used Monte Carlo resampling to assess empirical distribution of indirect effect via this web utility: http://www.quantpsy.org/medn.htm

Distribution of Indirect Effect

MODEL RESU	JLTS				
				T	wo-Tailed
		Estimate	S.E.	Est./S.E.	P-Value
SIMFAC	ON				
DSCAN		0.216	0.081	2.661	0.008
ACC2	ON				
DSCAN		-0.477	0.320	-1.491	0.136
SIMFAC		1.497	0.532	2.813	0.005
New/Addit:	ional	Parameters			
DSTOAC	2	0.323	0.160	2.026	0.043

MODET DECITED

Summary

- Path models are a very useful way to examine many different multivariate hypotheses simultaneously:
 - Unique direct and indirect effects ("mediation")
 - Differences in effect size (via model constraints)
 - > Relationships among mediators or outcomes
- Good fit is a pre-requisite to actually interpreting the model results, but good fit does not mean it is a good model
 - Good fit = model reproduces the covariance matrix of the endogenous variables (but it does not indicate how big or small those relationships are)
 - > However when all possible relationships among variables are estimated (either as covariances or direct regressions), fit is perfect
 - We used to call this "regression" or in PROC MIXED, "unstructured R matrix"
- Endogenous variables can have any distribution, but...
 - Estimation is much easier if they are MVN (use robust ML if not)
 - Absolute model fit is not provided by most software