
Missing Data 
Missing Data Methods in ML 

Multiple Imputation 

PSYC 943 (930): Fundamentals  
of Multivariate Modeling 

Lecture 18: October 31, 2012 

PSYC 943: Lecture 18 



Today’s Lecture 

• The basics of missing data: 
 Types of missing data 

 

• How NOT to handle missing data 
 Deletion methods (both pairwise and listwise) 
 Mean-substitution 
 Single Imputation 

 

• How maximum likelihood works with missing data 
 

• Multiple imputation for missing data 
 How imputation works 
 How to conduct analyses with missing data using imputation 
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Example Data #1 

• To demonstrate some of the ideas of types of missing data, let’s 
consider a situation where you have collected two variables: 
 IQ scores 
 Job performance 

 
• Imagine you are an employer looking to hire employees for a job 

where IQ is important 
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IQ Performance 
78 9 
84 13 
84 10 
85 8 
87 7 
91 7 
92 9 
94 9 
94 11 
96 7 
99 7 

105 10 
105 11 
106 15 
108 10 
112 10 
113 12 
115 14 
118 16 
134 12 

Complete Data 
From Enders (2010) 



TYPES OF MISSING DATA 
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Our Notational Setup 

• Let’s let D denote our data matrix, which will include dependent (Y) 
and independent (X) variables 

𝐃 = 𝐗,𝐘  

 
• Problem: some elements of 𝐃 are missing 
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Missingness Indicator Variables 

• We can construct an alternate matrix M consisting of indicators of 
missingness for each element in our data matrix D 

 
𝑀𝑖𝑖 = 0 if the 𝑖𝑡𝑡observation’s 𝑗𝑡𝑡 variable is not missing 
𝑀𝑖𝑖 = 1 if the 𝑖𝑡𝑡observation’s 𝑗𝑡𝑡 variable is missing 

 
• Let 𝑴𝑜𝑜𝑜 and 𝑴𝑚𝑚𝑚 denote the observed and missing parts of 𝑴 

𝑴 = {𝑴𝑜𝑜𝑜,𝑴𝑚𝑚𝑚} 
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Types of Missing Data 

• A very rough typology of missing data puts missing observations 
into three categories: 

 
1. Missing Completely At Random (MCAR) 
2. Missing At Random (MAR) 
3. Missing Not At Random (MNAR) 
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Missing Completely At Random (MCAR) 
• Missing data are MCAR if the events that lead to missingness are 

independent of: 
 The observed variables 

-and- 
 

 The unobserved parameters of interest 

 
• Examples: 

 Planned missingness in survey research 
 Some large-scale tests are sampled using booklets 
 Students receive only a few of the total number of items 
 The items not received are treated as missing – but that is completely a 

function of sampling and no other mechanism 
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A (More) Formal MCAR Definition 

• Our missing data indicators, 𝑴 are statistically independent of our 
observed data 𝑫 

 
𝑃 𝑴|𝑫 = 𝑃 𝑴  

 this comes from how independence works with pdfs 
 
• Like saying a missing observation is due to pure randomness  

(i.e., flipping a coin) 
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Implications of MCAR 

• Because the mechanism of missing is not due to anything other than 
chance, inclusion of MCAR in data will not bias your results 
 Can use methods based on listwise deletion, multiple imputation, or 

maximum likelihood 
 

• Your effective sample size is lowered, though 
 Less power, less efficiency 
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IQ Performance 
78 - 
84 13 
84 - 
85 8 
87 7 
91 7 
92 9 
94 9 
94 11 
96 - 
99 7 

105 10 
105 11 
106 15 
108 10 
112 - 
113 12 
115 14 
118 16 
134 - 

MCAR Data 
 

Missing data are dispersed randomly 
throughout data 

 
Mean IQ of complete cases: 99.7 
Mean IQ of incomplete cases: 100.8 

PSYC 943: Lecture 18 12 



Missing At Random (MAR) 

• Data are MAR if the probability of missing depends only on some (or 
all) of the observed data 

 

• 𝑴 is independent of 𝑫𝑚𝑚𝑚 
𝑃 𝑴 𝑫 = 𝑃(𝑴|𝑫𝑜𝑜𝑜) 
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IQ Perf Indicator 
78 - 1 
84 - 1 
84 - 1 
85 - 1 
87 - 1 
91 7 0 
92 9 0 
94 9 0 
94 11 0 
96 7 0 
99 7 0 

105 10 0 
105 11 0 
106 15 0 
108 10 0 
112 10 0 
113 12 0 
115 14 0 
118 16 0 
134 12 0 

MAR Data 
 

Missing data are related to  
other data: 

 
Any IQ less than 90 did not have a 
performance variable 
 
Mean IQ of incomplete cases: 83.6 
Mean IQ of complete cases: 105.5 
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Implications of MAR 

• If data are missing at random, biased results could occur 
 

• Inferences based on listwise deletion will be biased  
and inefficient 
 Fewer data points = more error in analysis 

 
• Inferences based on maximum likelihood will be unbiased but 

inefficient 
 

• We will focus on methods for MAR data today 
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Missing Not At Random (MNAR) 

• Data are MNAR if the probability of missing data is related to values 
of the variable itself 

𝑃 𝑴 𝑫 = 𝑃(𝑴|𝑫𝑜𝑜𝑜,𝑫𝑚𝑚𝑚) 
 

• Often called non-ignorable missingness 
 Inferences based on listwise deletion or maximum likelihood will be biased 

and inefficient 

 
• Need to provide statistical model for missing data simultaneously 

with estimation of original model 
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SURVIVING MISSING DATA:  
A BRIEF GUIDE 
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Using Statistical Methods with Missing Data 
• Missing data can alter your analysis results dramatically  

depending upon: 
1. The type of missing data 
2. The type of analysis algorithm 

 
• The choice of an algorithm and missing data method is important in 

avoiding issues due to missing data 
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The Worst Case Scenario: MNAR 

• The worst case scenario is when data are MNAR:  
missing not at random 
 Non-ignorable missing 

 
• You cannot easily get out of this mess 

 Instead you have to be clairvoyant 
 

• Analyses algorithms must incorporate models for missing data  
 And these models must also be right 
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The Reality 

• In most empirical studies, MNAR as a condition is an afterthought 
 

• It is impossible to know definitively if data truly are MNAR 
 So data are treated as MAR or MCAR 

 

• Hypothesis tests do exist for MCAR 
 Although they have some issues 
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The Best Case Scenario: MCAR 

• Under MCAR, pretty much anything you do with your data will give 
you the “right” (unbiased) estimates of your model parameters 
 

• MCAR is very unlikely to occur 
 In practice, MCAR is treated as equally unlikely as MNAR  
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The Middle Ground: MAR 

• MAR is the common compromise used in most empirical research 
 Under MAR, maximum likelihood algorithms are unbiased 

 

• Maximum likelihood is for many methods: 
 Linear mixed models in PROC MIXED 
 Models with “latent” random effects (CFA/SEM models) in Mplus 
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MISSING DATA IN 
MAXIMUM LIKELIHOOD  
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Missing Data with Maximum Likelihood 

• Handling missing data in maximum likelihood is much more 
straightforward due to the calculation of the log-likelihood function 
 Each subject contributes a portion due to their observations 

 
• If some of the data are missing, the log-likelihood function uses a 

reduced form of the MVN distribution 
 Capitalizing on the property of the MVN that subsets of variables from an 

MVN distribution are also MVN 
 

• The total log-likelihood is then maximized 
 Missing data just are “skipped” – they do not contribute 
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Each Person’s Contribution to the Log-Likelihood 

• For a person 𝑝, the MVN log-likelihood can be written: 

log 𝐿𝑝 = −
𝑉
2

log 2𝜋 −
1
2

log 𝚺𝒑 −
𝒚𝑝 − 𝝁𝑝

𝑇𝚺𝑝−1 𝒚𝑝 − 𝝁𝑝
2

 

 
 From our examples with missing data, subjects could either have all of their 

data…so their input into log 𝐿𝑝 uses: 

𝒚𝑝 =
𝑦𝑝,𝐼𝐼
𝑦𝑝,𝑃𝑃𝑃𝑃

;  

𝝁𝑝 = 𝐗𝑝𝜷 = 1 1
1 0

𝛽0
𝛽1

= 𝛽0 + 𝛽1
𝛽0

=
𝜇𝐼𝐼
𝜇𝑃𝑃𝑃𝑃 ; 

𝚺𝑝 =
𝜎𝐼𝐼2 𝜎𝐼𝐼,𝑃𝑃𝑃𝑃

𝜎𝐼𝐼,𝑃𝑃𝑃𝑃 𝜎𝑃𝑃𝑃𝑃2  

 
 …or could be missing the performance variable, yielding: 

𝒚𝑝 = 𝑦𝑝,𝐼𝐼 ;𝝁𝑝 = 𝐗𝑝𝜷 = 1 1
𝛽0
𝛽1

= [𝛽0 + 𝛽1] = 𝜇𝐼𝐼 ;𝚺𝑝 = 𝜎𝐼𝐼2  
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Evaluation of Missing Data in PROC MIXED  
(and pretty much all other packages) 
• If the dependent variables are missing, PROC MIXED automatically 

skips those variables in the likelihood 
 The REPEATED statement specifies observations with the same subject ID – 

and uses the non-missing observations from that subject only 
 

• If independent variables are missing, however, PROC MIXED uses 
listwise deletion 
 If you have missing IVs, this is a problem 
 You can sometimes phrase IVs as DVs, though 

 
• SAS Syntax (identical to when you have complete data): 
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Analysis of MCAR Data with PROC MIXED 

• Covariance matrices from slide #4 (MIXED is closer to complete): 
 
 
 

• Estimated 𝐑 matrix from PROC MIXED: 
 
 
 

• Output for each observation (obs #1 = missing, obs #2 = complete): 
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MCAR Data (Pairwise Deletion) 

IQ 115.6 19.4 

Performance 19.4 8.0 

Complete Data 

IQ 189.6 19.5 

Performance 19.5 6.8 



MCAR Analysis: Estimated Fixed Effects 

• Estimated mean vectors: 
 
 
 
 

• Estimated fixed effects: 
 
 
 

• Means – IQ = 89.36+10.64 = 100; Performance = 10.64 
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Variable MCAR Data 
(pairwise deletion) 

Complete Data 

IQ 93.73 100 

Performance 10.6 10.35 



Analysis of MAR Data with PROC MIXED 

• Covariance matrices from slide #4 (MIXED is closer to complete): 
 
 
 

• Estimated 𝐑 matrix from PROC MIXED: 
 
 
 

• Output for each observation (obs #1 = missing, obs #10 = complete): 
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Complete Data 

IQ 189.6 19.5 

Performance 19.5 6.8 

MAR Data (Pairwise Deletion 

IQ 130.2 19.5 

Performance 19.5 7.3 



MAR Analysis: Estimated Fixed Effects 

• Estimated mean vectors: 
 
 
 
 

• Estimated fixed effects: 
 
 
 

• Means – IQ = 90.15+9.85 = 100; Performance = 9.85 
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Variable MCAR Data 
(pairwise deletion) 

Complete Data 

IQ 105.4 100 

Performance 10.7 10.35 



Additional Issues with Missing Data and Maximum Likelihood 

• Given the structure of the missing data, the standard errors of the 
estimated parameters may be computed differently 
 Standard errors come from -1*inverse information matrix  

 Information matrix = matrix of second derivatives = hessian 
 

• Several versions of this matrix exist 
 Some based on what is expected under the model 

 The default in SAS – good only for MCAR data 
 Some based on what is observed from the data 

 Empirical option in SAS – works for MAR data (only for fixed effects) 
 

• Implication: some SEs may be biased if data are MAR 
 May lead to incorrect hypothesis test results 
 Correction needed for likelihood ratio/deviance test statistics 

 Not available in SAS; available for some models in Mplus 
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When ML Goes Bad… 

• For linear models with missing dependent variable(s) PROC MIXED 
and almost every other stat package works great 
 ML “skips” over the missing DVs in the likelihood function, using only the 

data you have observed 

 
• For linear models with missing independent variable(s), PROC 

MIXED and almost every other stat package uses list-wise deletion 
 Gives biased parameter estimates under MAR 
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Options for MAR for Linear Models with  
Missing Independent Variables 
1. Use ML Estimators and hope for MCAR 

 

2. Rephrase IVs as DVs 
 In SAS: hard to do, but possible for some models 

 Dummy coding, correlated random effects 
 Rely on properties of how correlations/covariances are related to linear model 

coefficients 𝛽 
 In Mplus: much easier…looks more like a structural equation model 

 Predicted variables then function like DVs in MIXED 
 

3. Impute IVs (multiple times) and then use ML Estimators  
 Not usually a great idea…but often the only option 
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ANOTHER EXAMPLE DATA SET 
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Today’s Example Data #2 

• Three variables were collected from a sample of 31 men in a course 
at NC State 
 Oxygen: oxygen intake, ml per kg body weight, per mintue 
 Runtime: time to run 1.5 miles in minutes 
 Runpulse: heart rate while running 

 
• The research question: how does oxygen intake vary as a function of 

exertion (running time and running heart rate) 
 

• The problem: some of the data are missing 
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Descriptive Statistics of Missing Data 

• Descriptive statistics of our data: 
 
 
 
 

• Patterns of missing data: 
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Comparing Missing and Not Missing 
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Oxygen Running Time 

Pulse Rate 



HOW NOT TO  
HANDLE MISSING DATA 
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Bad Ways to Handle Missing Data 

• Dealing with missing data is important, as the mechanisms you 
choose can dramatically alter your results 
 

• This point was not fully realized when the first methods for missing 
data were created 
 Each of the methods described in this section should  

never be used 
 Given to show perspective – and to allow you to understand what happens 

if you were to choose each 
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Deletion Methods 

• Deletion methods are just that: methods that handle missing data 
by deleting observations 
 Listwise deletion: delete the entire observation if any values are missing 
 Pairwise deletion: delete a pair of observations if either of the values are 

missing 

 
• Assumptions: Data are MCAR 

 
• Limitations:  

 Reduction in statistical power if MCAR 
 Biased estimates if MAR or MNAR 

PSYC 943: Lecture 18 40 



Listwise Deletion 

• Listwise deletion discards all of the data from an observation if one 
or more variables are missing 
 

• Most frequently used in statistical software packages that are not 
optimizing a likelihood function (need ML) 
 

• In linear models: 
 SAS GLM list-wise deletes cases where IVs or DVs are missing 
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Listwise Deletion Example 

• If you wanted to predict Oxygen from Running Time and Pulse Rate 
you could: 
 Start with one variable (running time): 

 
 
 
 

 Then add the other (running time + pulse rate): 
 
 
 
 

 
• The nested-model comparison test cannot be formed 

 Degrees of freedom error changes as missing values are omitted 
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Pairwise Deletion 

• Pairwise deletion discards a pair of observations if either one  
is missing 
 Different from listwise: uses more data (rest of data not thrown out) 

 
• Assumes: MCAR 

 
• Limitations:  

 Reduction in statistical power if MCAR 
 Biased estimates if MAR or MNAR 

 
• Can be an issue when forming covariance/correlation matrices 

 May make them non-invertible, problem if used as input into statistical 
procedures 
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Pairwise Deletion Example 

• Covariance Matrix from PROC CORR (see the different DF): 
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Single Imputation Methods 

• Single imputation methods replace missing data with some  
type of value 
 Single: one value used 
 Imputation: replace missing data with value 

 

• Upside: can use entire data set if missing values are replaced 
 

• Downside: biased parameter estimates and standard errors (even if 
missing is MCAR) 
 Type-I error issues 

 

• Still: never use these techniques 
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Unconditional Mean Imputation 

• Unconditional mean imputation replaces the missing values of a 
variable with its estimated mean 
 Unconditional  = mean value without any input from other variables 

• Example: missing Oxygen = 47.1; missing RunTime = 10.7;  
          missing RunPulse = 171.9 
 
 
 
 
 

• Notice: uniformly smaller standard deviations 
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Before Single Imputation: After Single Imputation: 



Conditional Mean Imputation (Regression) 

• Conditional mean imputation uses regression analyses to impute 
missing values 
 The missing values are imputed using the predicted values in each 

regression (conditional means) 

 
• For our data we would form regressions for each outcome using the 

other variables 
 OXYGEN = β01 + β11*RUNTIME + β21*PULSE 
 RUNTIME = β02 + β12*OXYGEN + β22*PULSE 
 PULSE = β03 + β13*OXYGEN + β23*RUNTIME 

 
• More accurate than unconditional mean imputation 

 But still provides biased parameters and SEs 
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Stochastic Conditional Mean Imputation 

• Stochastic conditional mean imputation adds a random component 
to the imputation 
 Representing the error term in each regression equation 
 Assumes MAR rather than MCAR 

 

• Again, uses regression analyses to impute data: 
 OXYGEN = β01 + β11*RUNTIME + β21*PULSE + Error 
 RUNTIME = β02 + β12*OXYGEN + β22*PULSE + Error 
 PULSE = β03 + β13*OXYGEN + β23*RUNTIME + Error 

 
• Error is random: drawn from a normal distribution 

 Zero mean and variance equal to residual variance 𝜎𝑒2 for  
respective regression  
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Imputation by Proximity: Hot Deck Matching 

• Hot deck matching uses real data – from other observations as its 
basis for imputing 
 

• Observations are “matched” using similar scores on variables in the 
data set 
 Imputed values come directly from matched observations  

 

• Upside: Helps to preserve univariate distributions; gives data in an 
appropriate range 
 

• Downside: biased estimates (especially of regression coefficients), 
too-small standard errors 

PSYC 943: Lecture 18 49 



Scale Imputation by Averaging 

• In psychometric tests, a common method of imputation has been to 
use a scale average rather than total score 
 Can re-scale to total score by taking # items * average score 

 
• Problem: treating missing items this way is like using person mean 

 Reduces standard errors 
 Makes calculation of reliability biased 
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Longitudinal Imputation: Last Observation Carried Forward 

• A commonly used imputation method in longitudinal data has been 
to treat observations that dropped out by carrying forward the 
last observation 
 More common in medical studies and clinical trials 

 
• Assumes scores do not change after dropout – bad idea 

 Thought to be conservative  
 

• Can exaggerate group differences 
 Limits standard errors that help detect group differences 
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Why Single Imputation Is Bad Science 

• Overall, the methods described in this section are not useful for 
handling missing data 
 

• If you use them you will likely get a statistical answer that is  
an artifact 
 Actual estimates you interpret (parameter estimates) will be biased (in 

either direction) 
 Standard errors will be too small 

 Leads to Type-I Errors 
 

• Putting this together: you will likely end up making conclusions 
about your data that are wrong 
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WHAT TO DO WHEN ML WON’T GO:  
MULTIPLE IMPUTATION 
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Multiple Imputation 

• Rather than using single imputation, a better method is to use 
multiple imputation 
 The multiply imputed values will end up adding variability to analyses – 

helping with biased parameter and SE estimates 

 
• Multiple imputation is a mechanism by which you “fill in” your 

missing data with “plausible” values 
 End up with multiple data sets – need to run multiple analyses 
 Missing data are predicted using a statistical model using the observed data 

(the MAR assumption) for each observation 

 
• MI is possible due to statistical assumptions 

 The most often used assumption is that the observed data are  
multivariate normal 

 We will focus on this today – and expand upon it on Friday 
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Multiple Imputation Steps 

1. The missing data are filled in a number of times (say, m times) to 
generate m complete data sets 
 

2. The m complete data sets are analyzed using standard  
statistical analyses 
 

3. The results from the m complete data sets are combined to 
produce inferential results 
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Distributions: The Key to Multiple Imputation 

• The key idea behind multiple imputation is that each missing value 
has a distribution of likely values 
 The distribution reflects the uncertainty about what the variable may 

have been 

 
• Multiple imputation can be accomplished using variables  

outside an analysis 
 All contribute to multivariate normal distribution 
 Harder to justify why un-important variables omitted  

 
• Single imputation, by any method, disregards the uncertainty in 

each missing data point 
 Results from singly imputed data sets may be biased or have higher  

Type-I errors 
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Multiple Imputation in SAS 

• SAS has a pair of procedures for multiple imputation: 
 PROC MI: generates multiple complete data sets 

 
 PROC MIANALYZE: analyzes the results of statistical analyses with imputed 

data sets 
 

• Most frequent assumption SAS uses is that data are  
multivariate normal 
 

• Not MVN? Mplus provides imputation options 
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IMPUTATION PHASE 
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SAS PROC MI 

• PROC MI uses a variety of methods depending on the type of 
missing data present 
 
 Monotone missing pattern: ordered missingness – if you order your 

variables sequentially, only the tail end of the variables collected is missing 
 Multiple methods exist for imputation 

 
 Arbitrary missing pattern: missing data follow no pattern 

 Most typical in data 
 Markov Chain Monte Carlo assuming MVN is used 
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Multivariate Normal Data 

• The MVN distribution has several nice properties 
 

• In SAS PROC MI, multiple imputation of arbitrary missing data takes 
advantage of the MVN properties 
 

• Imagine we have N observations of V variables from a MVN: 
𝒀(𝑁 𝑥 𝑉)~𝑁𝑉 𝛍,𝚺   

 
• The property we will use is the conditional distribution of  

MVN variables 
 We will examine the conditional distribution of missing data given the data 

we have observed 
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Conditional Distributions of MVN Variables 

• The conditional distribution of sets of variables from a MVN is 
also MVN 
 Used as the data-generating distribution in PROC MI 

 
• If we were interested in the distribution of the first q variables, we 

partition three matrices: 
 
 The data: 𝒀(𝑁 𝑥 𝑞) 𝑿(𝑁 𝑥 𝑉−𝑞)  

 The mean vector: 
𝝁𝑌:(𝑞 𝑥 1)
𝝁𝑋:(𝑉−𝑞 𝑥 1)

 

 The covariance matrix: 
𝚺𝑌𝑌:(𝑞 𝑥 𝑞) 𝚺𝑌𝑌:(𝑞 𝑥 𝑉−𝑞)
𝚺𝑋𝑋:(𝑉−𝑞 𝑥 𝑞) 𝚺𝑋𝑋:(𝑉−𝑞 𝑥 𝑉−𝑞)
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Conditional Distributions of MVN Variables 

• The conditional distribution of 𝒀 given the values  
of 𝑿 = 𝒙 is then: 

𝒀|𝑿~𝑁𝑞 𝝁∗,𝚺∗  
 
Where (using our partitioned matrices): 
 

𝝁∗ = 𝝁𝑌 + 𝚺𝑌𝑌𝚺XX−1 𝒙′ − 𝝁𝑋  
And: 
 

𝚺∗ = 𝚺𝑌𝑌 − 𝚺𝑌𝑌𝚺𝑋𝑋−1𝚺𝑋𝑋 
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Example from our Data 

• From estimates with missing data: 

𝒚� =  
47.1
10.7

171.9
; 𝐒 =

29.3 −6.0 −19.5
−6.0 1.9 3.7
−19.5 3.7 102.9

 

 
• For observation #4 (missing oxygen): 𝐱 = 11.96 176   

 We wish to impute the first observation (oxygen) conditional on the values 
of runtime and pulse 

 
• Assuming MVN, we get the following sub-matrices: 

𝐱�𝑌 = 47.1 ; 𝐱�𝑋= 10.7
171.9  

𝐒𝑌𝑌 = 29.3 ; 𝐒𝑌𝑌 = −6.0 −19.5 ; 
𝐒𝑋𝑋 = −6.0

−19.5 ; 𝐒𝑋𝑋 = 1.9 3.7
3.7 102.9 ; 𝐒𝑋𝑋−1 = .56 −.02

−.02 .01  
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Imputation Distribution 

• The imputed value for Oxygen for observation #4 is drawn from a 
𝑁1 43.0,9.8 : 

 
Mean: 
𝒚�∗ = 𝐱�𝑌 + 𝐒𝑌𝑌𝐒𝑋𝑋−1 𝐱′ − 𝐱�𝑋 =
47.1 + −6.0 −19.5 .56 −.02

−.02 .01
11.96
176 − 10.7

171.9  

= 43.0 
Variance: 

𝐒∗ = 𝐒𝑌𝑌 − 𝐒𝑌𝑌𝐒𝑋𝑋−1𝐒𝑋𝑋
= 29.3 − −6.0 −19.5 .56 −.02

−.02 .01
−6.0
−19.5  

= 9.8 
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Using the MVN for Missing Data 

• If we consider our missing data to be 𝒀, we can then use the result 
from the last slide to generate imputed (plausible) values for our 
missing data 
 

• Data generated from a MVN distribution is fairly common and 
“easy” to do computationally 
 

• However…. 
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The Problem: True 𝝁 and 𝚺 are Unknown 

• Problem: the true mean vector and covariance matrix for our data is 
unknown 
 We only have sample estimates 

 Sample estimates have sampling error 
– The mean vector has a MVN distribution 
– The sample covariance matrix has a (scaled) Wishart distribution 

 Missing data complicate the situation by providing even fewer observations 
to estimate either parameter 

 

• The example from before used one estimate (but that is unlikely to 
be correct) 
 It used pairwise deletion 
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The PROC MI Solution 

• PROC MI: use MCMC to estimate data and parameters 
simultaneously: 
 

Step 0: Create starting value estimates for 𝝁 and 𝚺: (𝝁𝑡−1=0,𝚺𝑡−1=0) 
 
Iterate t times through:  
Step 1: Using 𝝁𝑡−1,𝚺𝑡−1 generate the missing data from the 
conditional MVN (conditional on the observed values for each case) 
 
Step 2: Using the imputed and observed data, draw a new 𝝁𝑡 ,𝚺𝑡 from 
the MVN and Wishart distributions, respectively 
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The Process of Imputation 

• The iterations take “a while” to reach a steady state – stable values 
for the distribution of 𝝁𝑡 ,𝚺𝑡 
 The burn in period 

 

• After this period, you can take sets of imputed data to be used in 
your multiple analyses 
 The sets should be taken with “enough” iterations in between so as to not 

be highly correlated 
 The thinning interval 
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Using PROC MI 

• PROC MI Syntax: 
 
 
 
 

• More often than not, the output of MI does not have much  
useful information 
 Must assume convergence of mean vector and covariance matrix – but 

limited statistics to check convergence 

 
• Of interest is the new data set (WORK.fitimpute) 

 Here it contains 30 imputations for each missing variable 
 Need to run the regression 30 times – Analysis and Pooling Phase 
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MCMC Trace Plots – Use for Checking Convergence 
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Inspecting Imputed Values 

• To demonstrate the imputed values, look at the histogram of the 30 
values for observation 4: 
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Resulting Data Sets 

• The new data sets are all 
stacked on top of each other 
 

• Analyses now must add a line  
that says BY so each new data 
set has its own analysis 
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MULTIPLE IMPUTATION:  
ANALYSIS PHASE 
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Up Next: Multiple Analyses 

• Once you run PROC MI, the next step is to use each of the imputed 
data sets in its own analysis 
 Called the analysis phase 
 For our example, that would be 30 times 

 

• The multiple analyses are then compiled and processed into a  
single result 
 Yielding the answers to your analysis questions (estimates, SEs, and P-

values) 

 
• GOOD NEWS: SAS will automate all of this for you 
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Analysis Phase 

• Analysis Phase: run the analysis on all imputed data sets 
  

 
 
 

• Syntax runs for each data set (BY _IMPUTATION_) 
• The ODS OUTPUT line saves information needed in the  

pooling phase:  
 Parameter estimates (to make parameter estimates) 

 SolutionF=WORK.fixedeffects 
 Asymptotic covariance matrix of the fixed effects 𝑿𝑇𝑽−1𝑿 −1 

 CovB=WORK.CovMatrices 
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Saving Information from Other SAS PROCs 

• Because of the various number of PROC types SAS implements, 
there are a variety of difference commands you must use if you are 
using Multiple Imputation in SAS 
 

• The SAS User’s Group document by Yuan posted on our website 
outlines the varying ways to do so 
 Although, some will not work without a reference to the SAS 9.3 manual 
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MULTIPLE IMPUTATION: 
POOLING PHASE 

PSYC 943: Lecture 18 77 



Pooling Parameters from Analyses of Imputed Data Sets 

• In the pooling phase, the results are pooled and reported 
 

• For parameter estimates, the pooling is straight forward 
 The estimated parameter is the average parameter value across all imputed 

data sets  
 For our example the average intercept, slope for runtime, and slope for 

runpulse are taken over the 30 imputed data sets and analyses 
 

• For standard errors, pooling is more complicated 
 Have to worry about sources of variation: 

 Variation from sampling error that would have been present had the data not 
been missing 

 Variation from sampling error resulting from missing data 
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Pooling Standard Errors Across Imputation Analyses 

• Standard error information comes from two sources of variation 
from imputation analyses (for 𝑚 imputations) 
 

• Within Imputation Variation: 

𝑉𝑊 =
1
𝑚
�𝑆𝐸𝑖2
𝑚

𝑖=1

 

• Between Imputation Variation (here 𝜃 is an estimated parameter 
from an imputation analysis): 

𝑉𝐵 =
1

𝑚 − 1
� 𝜃�𝑖 − 𝜃̅ 2
𝑚

𝑖=1

 

• Then, the total sampling variance is: 𝑉𝑇 = 𝑉𝑊 + 𝑉𝐵 + 𝑉𝐵
𝑀

 

• The subsequent (imputation pooled) SE is 𝑆𝑆 = 𝑉𝑇 
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Pooling Phase in SAS: PROC MIANALYZE 

• SAS PROC MIANALYZE conducts the pooling phase of imputations: 
no calculations are needed 
 
 
 

• The parameter data set, the asymptotic covariance matrix dataset, 
and the number of error degrees of freedom are all input 
 

• The MODELEFFECTS line combs through the input data and 
conducts the pooling 
 

• NOTE: different PROC lines have different input values. SEE: 
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/d
efault/viewer.htm#mianalyze_toc.htm 
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http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm
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PROC MIANALYZE OUTPUT 

PSYC 943: Lecture 18 81 

Variances: 
See Next Slides 

Parameter Estimates – With Hypothesis Test P-Values 



Additional Pooling Information 

• The decomposition of imputation variance leads to two helpful 
diagnostic measures about the imputation: 
 

• Fraction of Missing Information: 𝐹𝐹𝐹 =
𝑉𝐵+

𝑉𝐵
𝑚

𝑉𝑇
 

 Measure of influence of missing data on sampling variance 
 Example: intercept = 0.28; runtime = .26; runpulse = .26 
 ~27% of parameters variance attributable to missing data 

 

• Relative Increase in Variance: 𝑅𝑅𝑅 =
𝑉𝐵+

𝑉𝐵
𝑚

𝑉𝑊
= 𝐹𝐹𝐹

1−𝐹𝐹𝐹
 

 Another measure of influence of missing data on sampling variance 
 Example: intercept = 0.38; runtime = .35; runpulse = .35 
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ISSUES WITH IMPUTATION 
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Common Issues that can Hinder Imputation 

• MCMC Convergence 
 Need “stable” mean vector/covariance matrix 

 
• Non-normal data: counts, skewed distributions, categorical (ordinal 

or nominal) variables 
 Mplus is a good option 
 Some claim it doesn’t matter as much with many imputations 

 
• Preservation of model effects 

 Imputation can strip out effects in data 
 Interactions are most difficult – form as auxiliary variable 

 
• Imputation of multilevel data 

 Differing covariance matrices 
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Number of Imputations 

• The number of imputations (𝑚 from the previous slides) is 
important: bigger is better 
 Basically, run as many as you can (100s) 

 

• Take a look at the SEs for our parameters as I varied the number of 
imputations: 
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Parameter 𝑚 = 1 𝑚 = 10 𝑚 = 30 𝑚 = 100 

Intercept 8.722 9.442 9.672 9.558 

RunTime 0.366 0.386 0.399 0.389 

RunPulse 0.053 0.053 0.057 0.056 



WRAPPING UP 
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Wrapping Up 

• Missing data are common in statistical analyses 
 

• They are frequently neglected 
 MNAR: hard to model missing data and observed data simultaneously 
 MCAR: doesn’t often happen 
 MAR: most missing imputation assumes MVN 

 
• More often than not, ML is the best choice 

 Software is getting better at handling missing data 
 We will discuss how ML works next week 
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