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Today’s Class

- The conclusion of Friday’s lecture on matrix algebra
» Matrix inverse

Zero/ones vector

Matrix identity

Matrix determinant

NOTE: an introduction to principal components analysis will be relocated
later in the semester

YV V V V

.« Putting matrix algebra to use in multivariate statistics
» Mean vectors
» Covariance matrices

. The multivariate normal distribution
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DATA EXAMPLE AND SAS



A Guiding Example

To demonstrate matrix algebra, we will make use of data

Imagine that somehow | collected data SAT test scores for both the
Math (SATM) and Verbal (SATV) sections of 1,000 students

The descriptive statistics of this data set are given below:

Statistic | SATY | SATM

Mean | 499.3 | 498.3

SD 49.8 81.2
Correlation

SATV 1.00 0.78

SATM 0.78 1.00
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The Data...

In Excel: In SAS:

- S e Whcrosor ExcT I el o =le et S -

Zigh VIEWTABLE: Sat.Satdata

Home| Inser | Page | Form | Data | Revie | View | Add-1| & 9 [T
e — satv satm

2 LA (S| || % | A B8] ETET 1 520 580
= Font | Alignment Mumber Styles | Cells E' - I 2 520 550
i i i i i i 3 460 440
Clipboard 1= Editing 4 560 530
| Al - fe | ATV A 5 430 440
A B c D E F G & 6 430 530
1 [SATV SATM % T R0 hal
2 520 580 8 530 570
| 3 520 550 9 450 R0
4 460 440 10 450 470
5 260 530 11 210 560
& 430 440 12 480 510
7 430 530 13 470 420
8 570 580 | 14 500 520
E; 530 570 15 430 470
10 450 240 16 450 350
11 450 470 17 500 480
12 510 960 18 510 500
13 80| 510 19 510 630
f[ 14 470 420 20 450 410
= >00 520 21 410 380
16 480 470 22 460 460
E :‘EE i:ﬁ 3| 500 530
15 510 500 i 540 °00
20 610 630 2 500 510
26 530 560
21 450 410 77 54 £

22 410 380 —
23 460 460 i 500 330
_ 29 430 570
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Matrix Computing: PROC IML

To help demonstrate the topics we will discuss today, | will be
showing examples in SAS PROC IML

The Interactive Matrix Language (IML) is a scientific computing

package in SAS that typically used for statistical routines that aren’t
programed elsewhere in SAS

Useful documentation for IML:

http://support.sas.com/documentation/cdl/en/imlug/64248/HTML/de
fault/viewer.htm#langref toc.htm

A great web reference for IML:
http://www.psych.yorku.ca/lab/sas/iml.htm
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http://support.sas.com/documentation/cdl/en/imlug/64248/HTML/default/viewer.htm
http://www.psych.yorku.ca/lab/sas/iml.htm

MATRIX ALGEBRA



Moving from Vectors to Matrices

A matrix can be thought of as a collection of vectors
> Matrix operations are vector operations on steroids

Matrix algebra defines a set of operations and entities on matrices
> | will present a version meant to mirror your previous algebra experiences

Definitions:
> ldentity matrix
» Zero vector
» Ones vector

Basic Operations:
> Addition
> Subtraction
> Multiplication
> “Division”
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Matrix Addition and Subtraction

Matrix addition and subtraction are much like vector
addition/subtraction

Rules:
> Matrices must be the same size (rows and columns)

Method:

> The new matrix is constructed of element-by-element addition/subtraction
of the previous matrices

Order:

> The order of the matrices (pre- and post-) does not matter
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Matrix Addition/Subtraction

A+B

PSYC 943: Lecture 11

11
121

A—
131
| aq
a1 + by
a2 + tIJ'gJ_

as1 + bay
41 + tIJ'4J_

12
122

132

42

aiz + bio
aza + bag
az2 + bao
@42 + byo

b1 b2
ba1  ba2
ba1  baz2
by byo

a1l — b1
agy — boy
as1 — bai
ag — by

a1z — b2
a2 — bag
as2 — bas
g2 — byo
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Matrix Multiplication

- Matrix multiplication is a bit more complicated

> The new matrix may be a different size from either of the two
multiplying matrices

A(rx c)B(cx k) — C(rx k)

. Rules:

> Pre-multiplying matrix must have number of columns equal to the number
of rows of the post-multiplying matrix

. Method:

> The elements of the new matrix consist of the inner (dot) product of the
row vectors of the pre-multiplying matrix and the column vectors of the
post-multiplying matrix

. Order:

> The order of the matrices (pre- and post-) matters
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Matrix Multiplication

AB =
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ay1by + ajaboy
az1by1 + asgboy
as1byy + asaboy
as1b11 + asoboy

ay1bia + ayobao
ag1 b2 + agobas
asybia + asaboo
aq1b12 + agobas

ann a2
A ag; a2 B bir D12 big
| as a3 | bar bao bog
g1 Q40

a11b13 + ai2bas
az1by3 + azabay
as1b13 + asabas
aq1b13 + asabay
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Multiplication in Statistics

Many statistical formulae with summation can be re-expressed
with matrices

A common matrix multiplication form is: X7X
> Diagonal elements: Y.7_; X
> Off-diagonal elements: Y'3_1 X0 Xpp

For our SAT example

N N T
z TV} z SATV,SATM,

z SATV,SATM,, z SATM2

XX =

251 797,800 251, 928 400
251,928,400 254,862,700
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Identity Matrix

- The identity matrix is a matrix that, when pre- or post- multiplied by
another matrix results in the original matrix:
Al =A
IA=A

- The identity matrix is a square matrix that has:
> Diagonal elements =1
> Off-diagonal elements =0

100]

I(3x3):[0 1 0
0 0 1
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« The zero vector is a column vector of zeros

0
0(3x1) =10
0

-  When pre- or post- multiplied the result is the zero vector:
A0=0
0OA=0
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. A ones vectoris a column vector of 1s:
1

1(3x1) — [1]
1

- The ones vector is useful for calculating statistical terms, such as the
mean vector and the covariance matrix
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Matrix “Division”: The Inverse Matrix

Division from algebra:

. a 1 _
> First: —==a =b"1la
b b

> Second: < =1
a

“Division” in matrices serves a similar role

> For square and symmetric matrices, an inverse matrix is a matrix that when
pre- or post- multiplied with another matrix produces the identity matrix:
A 1A =1
AA1 =

Calculation of the matrix inverse is complicated
> Even computers have a tough time

Not all matrices can be inverted

> Non-invertible matrices are called singular matrices

+ In statistics, singular matrices are commonly caused by linear dependencies
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The Inverse

- In data: the inverse shows up constantly in statistics

> Models which assume some type of (multivariate) normality need an
inverse covariance matrix

« Using our SAT example
> Our data matrix was size (1000 x 2), which is not invertible

> However XTX was size (2 x 2) — square, and symmetric
XTY — [251,797,800 251,928,400
~1251,928,400 254,862,700
> The inverse is:
Tvv—1 _ [ 3.61E—7 —3.57E =7
(XTX)™" = [—3.573 —7 3.56E-7 ]
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Matrix Determinants

- A square matrix can be characterized by a scalar value called a
determinant:

detA = |A]

- Calculation of the determinant is tedious
> The determinant for the covariance matrix of our SAT example was 6,514,104.5

- For two-by-two matrices ”CCl Z” = ad — bc

- The determinant is useful in statistics:
» Shows up in multivariate statistical distributions
> |Is a measure of “generalized” variance of multiple variables

- If the determinant is positive, the matrix is called positive definite
> Isinvertible

If the determinant is not positive, the matrix is called
non-positive definite

> Not invertible
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.- For a square matrix A with V rows/columns, the trace is the sum of

the diagonal elements:
v
trA = z Ay
v=1

- For our data, the trace of the correlation matrix is 2

> For all correlation matrices, the trace is equal to the number of variables
because all diagonal elements are 1

. The trace is considered the total variance in multivariate statistics
> Used as a target to recover when applying statistical models
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Matrix Algebra Operations (for help in reading stats manuals)

. (A+B)+C= . A(B+C) = AB + AC
A+ (B+C) . (AB)T = BTAT
- A+B=B+A - For x; such that Ax; exists:
- c(A+B)=cA+cB
. (c+d)A=cA+dA ZAXJZAZXJ
. (A+B)T =AT + BT
. (cd)A = c(dA _
( )T (T) Z(AX])(AXJ) =
- (cA)" =cA

- ¢c(AB) = (cA)B
. A(BC) = (AB)C

”MZ
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MULTIVARIATE STATISTICS
AND DISTRIBUTIONS



Multivariate Statistics

Up to this point in this course, we have focused on the prediction (or
modeling) of a single variable
> Conditional distributions (aka, generalized linear models)

Multivariate statistics is about exploring joint distributions
> How variables relate to each other simultaneously

Therefore, we must adapt our conditional distributions to have multiple
variables, simultaneously (later, as multiple outcomes)

We will now look at the joint distributions of two variables f (x,x,) orin
matrix form: f(X) (where X is size N x 2; f(X) gives a scalar/single
number)

> Beginning with two, then moving to anything more than two

> We will begin by looking at multivariate descriptive statistics
+ Mean vectors and covariance matrices

Today, we will only consider the joint distribution of sets of variables —
but next time we will put this into a GLM-like setup
> The joint distribution will the be conditional on other variables
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Multiple Means: The Mean Vector

. We can use a vector to describe the set of means for our data

T
1 X
x=—XT1=|"2
1\, .

| Xy

> Here 1isa N x 1 vector of 1s
> The resulting mean vector is a v x 1 vector of means

. For our data:
499, 32] [xSATV]

X =
499.27 XsATM
« In SAS PROC IML:
*0ONES VECTCR WITH SAME LENGTH AS NUMBER OF OBSERVATICONS:
ONES = J(N,1,1); *J function (built in) creates a new matrix with (#rows, #cols, wvalue of element):

*CALCULATION OF THE MELN VECTOCR:

meanvec = [(1/H)*t (¥)*0NES: #*t() function (built in) transposes the matrix in the parenthesess;
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Covariance of a Pair of Variables

- The covariance is a measure of the relatedness
> Expressed in the product of the units of the two variables:

N
1
Sx1xp; = NZ(xpl o Qz1)(36192 o fz)
p=1

> The covariance between SATV and SATM was 3,132.22
(in SAT Verbal-Maths)

> The denominator N is the ML version — unbiased is N-1

- Because the units of the covariance are difficult to understand, we
more commonly describe association (correlation) between two
variables with correlation

> Covariance divided by the product of each variable’s standard deviation
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Correlation of a Pair of Varibles

. Correlation is covariance divided by the product of the standard

deviation of each variable:
Sx1x2

rx1x2 =
2 2
\/le\/SxZ

> The correlation between SATM and SATV was 0.78

. Correlation is unitless — it only ranges between -1 and 1

» If x; and x, both had variances of 1, the covariance between them would
be a correlation
+ Covariance of standardized variables = correlation

PSYC 943: Lecture 11 27



Covariance and Correlation in Matrices

- The covariance matrix (for any number of variables v) is found by:

1 5%,
S = ~ X-1xDHT'X —-1x") =

_lexV
L]
« In SAS PROC IML:
*OMES VECTCR WITH SaME LENGTH AS NUMBER COF CBSERVATICONS:
ONES = J(H,1,1); *J function (built in) creates a new matrix with (#rows, #cols,
*CALCULATION OF THE MEAN VECTOR:
meanves = [(1/H) #tc (¥) #*0OHES;
*CALCULATION OF THE COVARIANCE MATRIX:
mean matrix = OHES*t (meanvec); “for covariance matrix;
COV_matrix = (1/H) *c (X - mean matrix) (X - mean matrix);
cov_matrix 2 rous

2,477.34 3,123.22

S — 3,13222 6,58971 3132.2236 6589.7071
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2
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value of element);

2 cols (numeric)
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From Covariance to Correlation

. If we take the SDs (the square root of the diagonal of the covariance
matrix) and put them into a diagonal matrix D, the correlation

matrix is found by:
— 2 -

le lexp

2 2 2 2 _ -
\/le\/le \/leJSxV 1 Txlxv

R=D1SD ! = : : =1 :
2

lexv S.X'V _rxlxv 1

2 2 2 2
JsleSXV \/va\/sxv
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Example Covariance Matrix

For our data, the covariance matrix was:
S — 2,477.34 3,123.22

3,132.22 6,589.71

The diagonal matrix D was:

b V2,477.34 0 :[49_77 0 ]
0 J/6,589.71 0 8118

The correlation matrix R was:

1 - -1
—— 0 —
R — D-lsp-1 — 4977 [2,477.34 3,123.22]|49.77
) 1 |I313222 658971]| 1
81.18. 81.18-

~71.00 .78
R _[ 78  1.00
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*DIAGONAT. MATRIX OF STLANDARD DEVIATICONS FRCM COVARILANCE MATRIX:

*5QRT TLAFKES STLANDARD DEVIATION (COVARIANCE MATRIX HLS VARILNCES) :

D matrix = SQRET (DIAG (cov_matrix)):

D matrix 2 rows 2 cols (numeric)
49.77286 0
0 81.177011

*INVERSE OF D Matrix:;
D matrix inv = INV(D matrix):

D matrix_inw ? rous ?2 cols (numeric)
0.0200913 1]
0 0.0123188
*COREELATICN MATEIX:;

corr matrix = D matrix inv*cov_matrix*D matrix inv;

orr_matrix 2 rowus 2 cols (numeric)

1 0.7r5L2238
0.7r52238 1
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Generalized Variance

- The determinant of the covariance matrix is the generalized variance
Generalized Sample Variance = |S]

- Itis a measure of spread across all variables
> Reflecting how much overlap (covariance) in variables occurs in the sample
> Amount of overlap reduces the generalized sample variance
> Generalized variance from our SAT example: 6,514,104.5
> Generalized variance if zero covariance/correlation: 16,324,929

*GENERALIZED VARILZMWCE:: EN_VAR 1 row 1 col (numeric)
GEN VAR = DET (cov_matrix);

6514104 .5

- The generalized sample variance is:
» Largest when variables are uncorrelated
> Zero when variables form a linear dependency

. In data:

> The generalized variance is seldom used descriptively, but shows up more
frequently in maximum likelihood functions
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Total Sample Variance

The total sample variance is the sum of the variances of each
variable in the sample

> The sum of the diagonal elements of the sample covariance matrix

> The trace of the sample covariance matrix
v

Total Sample Variance = z s,%i =1trS
v=1

Total sample variance for our SAT example:

- SAMPLE VARIANCE: TOT_VAR 1 row 1 col (numeric)

*TOTAL
TCT VAR = TRACE (cov_matrix):
9067 . 0447

The total sample variance does not take into consideration the
covariances among the variables
> Will not equal zero if linearly dependency exists

In data:

> The total sample variance is commonly used as the denominator (target)
when calculating variance accounted for measures
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MULTIVARIATE DISTRIBUTIONS
(VARIABLES 2 2)



Multivariate Normal Distribution

- The multivariate normal distribution is the generalization of the

univariate normal distribution to multiple variables
> The bivariate normal distribution just shown is part of the MVN

- The MVN provides the relative likelihood of observing all V variables
for a subject p simultaneously:
Xp = [xpl xpz xpv]

- The multivariate normal density function is:
T
1 (xD —p) 27H(xD — )
f(xp) = v 1XP | : 7 :
(2m)2|Z]2
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The Multivariate Normal Distribution

T
T —1(+T
f(X)_ . ex —(Xp_”)z (Xp_”)
p) = v 1P 2
(2m)2[z)2
—Mxl-
. sz
- Themeanvectorisu =1 .
_.uxv_
- 2 T
O-xj_ O-xle O-xle
2
. . . O- O— coe O'
. The covariance matrixis X = | ~*1*2 X2 , *av
o0 0 2

> The covariance matrix must be non-singular (invertible)
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Comparing Univariate and Multivariate Normal Distributions

. The univariate normal distribution:
1 (x — w)*
f(xp) — Wexp o 2 52

- The univariate normal, rewritten with a little algebra:

1
et ap] o
(2m)z]o|2

. The multivariate normal distribution

1 T _ ) v-1(xT —
f(x,) = —exp |- (xp — 1) ) (x5 ”)]
(2m)Z|X|2

> WhenV = 1 (one variable), the MVN is a univariate normal distribution
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The Exponent Term

- The term in the exponent (without the — %) is called the squared

Mahalanobis Distance

>

>

>

>

d?(x,) = (x5 — ) (x5 — )
Sometimes called the statistical distance

Describes how far an observation is from its mean vector, in
standardized units

Like a multivariate Z score (but, if data are MVN, is actually distributed as a
x*?variable with DF = number of variables in X)

Can be used to assess if data follow MVN
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Multivariate Normal Notation

. Standard notation for the multivariate normal distribution of v
variables is N, (u, X)

> Our SAT example would use a bivariate normal: N, (i, X)

. In data:

> The multivariate normal distribution serves as the basis for most every
statistical technigue commonly used in the social and educational sciences
+ General linear models (ANOVA, regression, MANOVA)
+ General linear mixed models (HLM/multilevel models)
+ Factor and structural equation models (EFA, CFA, SEM, path models)
+ Multiple imputation for missing data

> Simply put, the world of commonly used statistics revolves around the
multivariate normal distribution

+ Understanding it is the key to understanding many statistical methods
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Bivariate Normal Plot #1

2
u= [.uxll _ [O y — Ox, O-x1x2 [1
— — S X =
125% 0 0
2 Ox 1X2 O-x 2
4
3
2 = - B -

Pty m 1\1{{ "i,.x;I_'.'_____‘_'_'_::_-l.._.f'“\\
i 1 7\
"5“%%*"* “}u‘* C 07770000
A J-"’?Ff :W 1:1.“!:.11'{| a l'. .'.. ".I_ | "-.\i\l'\ - _./':,"!,-"l ,"I || I| |

1 N

, -.._._______ _—_—_ -

-3

_4—4 3 -2 -1I ] 1 2 3 4
Density Surface (3D) Density Surface (2D):

Contour Plot
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Bivariate Normal Plot #2 (Multivariate Normal)

Density Surface (3D) Density Surface (2D):
Contour Plot
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Multivariate Normal Properties

- The multivariate normal distribution has some useful properties
that show up in statistical methods

. If X'is distributed multivariate normally:
1. Linear combinations of X are normally distributed

2. All subsets of X are multivariate normally distributed

3. Azero covariance between a pair of variables of X implies that the
variables are independent

4. Conditional distributions of X are multivariate normal
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Multivariate Normal Distribution in PROC IML

- To demonstrate how the MVN works, we will now investigate how

the PDF provides the likelihood (height) for a given observation:

> Here we will use the SAT data and assume the sample mean vector and

covariance matrix are known to be the true:
_ [499.32] S — 2,477.34 3,123.22

498.27 ~ [3,132.22 6,589.71

-  We will compute the likelihood value for several observations (SEE
EXAMPLE SAS SYNTAX FOR HOW THIS WORKS):
> Xg31,. = [590 730]; f(x) = 0.00000087528
> X717. = [340 300]; f(x) = 0.00000037082
> X =X=1[499.32 498.27]; f(x) = 0.0000624

- Note: this is the height for these observations, not the joint
likelihood across all the data

> Next time we will use PROC MIXED to find the parameters in u and X using
maximum likelihood

PSYC 943: Lecture 11 43



Likelihoods...From SAS

*MULTIVARITATE NORMAT DISTRIBUTION FUNCTICON CALCULLTIONS:
*CONSTANTS FOR ALL CALCULATICHNS::

PT = CONSTANT ('pi')}: *the constant pi:

HVAR = MNCOL (X):; #*the number of wvariables in X I 1 v
x,) |E
(xp

f

pi_constant = (2%PI)** (VAR 2 ) - 1
sigma constant = DET (cov_matrix) ** (1/2) (27-[) |Z|2
sigma inverse = INV(cov_matrix):

*OBSERVATION #631:;
abs = X[631,];

mean diff = t(obs)-meanvec;
eXponent term = (-1/2)*t (mean diff)*sigma inverse*mean diffa
likelihood = il;’pi_cnnstant] = il,-’.sigrr.a_cnnstant] *EXp (eXponent_term);
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Wrapping Up

- The last two classes set the stage to discuss multivariate statistical
methods that use maximum likelihood

- Matrix algebra was necessary so as to concisely talk about our
distributions (which will soon be models)

- The multivariate normal distribution will be necessary to
understand as it is the most commonly used distribution for
estimation of multivariate models

- Friday we will get back into data analysis — but for multivariate
observations...using SAS PROC MIXED
> Each term of the MVN will be mapped onto the PROC MIXED output
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