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Today’s Class 

• The conclusion of Friday’s lecture on matrix algebra 
 Matrix inverse 
 Zero/ones vector 
 Matrix identity 
 Matrix determinant 
 NOTE:  an introduction to principal components analysis will be relocated 

later in the semester 

 
• Putting matrix algebra to use in multivariate statistics 

 Mean vectors 
 Covariance matrices 

 

• The multivariate normal distribution 
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DATA EXAMPLE AND SAS 
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A Guiding Example 

• To demonstrate matrix algebra, we will make use of data 
• Imagine that somehow I collected data SAT test scores for both the 

Math (SATM) and Verbal (SATV) sections of 1,000 students 
 

• The descriptive statistics of this data set are given below: 
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The Data… 

In Excel: In SAS: 
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Matrix Computing: PROC IML 

• To help demonstrate the topics we will discuss today, I will be 
showing examples in SAS PROC IML 
 

• The Interactive Matrix Language (IML) is a scientific computing 
package in SAS that typically used for statistical routines that aren’t 
programed elsewhere in SAS 
 

• Useful documentation for IML: 
http://support.sas.com/documentation/cdl/en/imlug/64248/HTML/de
fault/viewer.htm#langref_toc.htm 
 
• A great web reference for IML: 
http://www.psych.yorku.ca/lab/sas/iml.htm 
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MATRIX ALGEBRA 
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Moving from Vectors to Matrices 

• A matrix can be thought of as a collection of vectors 
 Matrix operations are vector operations on steroids 

 

• Matrix algebra defines a set of operations and entities on matrices 
 I will present a version meant to mirror your previous algebra experiences 

 

• Definitions: 
 Identity matrix 
 Zero vector 
 Ones vector 

 

• Basic Operations: 
 Addition 
 Subtraction 
 Multiplication 
 “Division” 
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Matrix Addition and Subtraction 

• Matrix addition and subtraction are much like vector 
addition/subtraction 
 

• Rules: 
 Matrices must be the same size (rows and columns) 

 
• Method: 

 The new matrix is constructed of element-by-element addition/subtraction 
of the previous matrices 

 
• Order: 

 The order of the matrices (pre- and post-) does not matter 

PSYC 943: Lecture 11 9 



Matrix Addition/Subtraction  
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Matrix Multiplication 

• Matrix multiplication is a bit more complicated 
 The new matrix may be a different size from either of the two  

multiplying matrices 
𝐀(𝑟 𝑥 𝑐)𝐁(𝑐 𝑥 𝑘) = 𝐂(𝑟 𝑥 𝑘) 

• Rules: 
 Pre-multiplying matrix must have number of columns equal to the number 

of rows of the post-multiplying matrix 

 
• Method: 

 The elements of the new matrix consist of the inner (dot) product of the 
row vectors of the pre-multiplying matrix and the column vectors of the 
post-multiplying matrix  

 
• Order: 

 The order of the matrices (pre- and post-) matters 
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Matrix Multiplication 
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Multiplication in Statistics 

• Many statistical formulae with summation can be re-expressed  
with matrices 
 

• A common matrix multiplication form is: 𝐗𝑇𝐗 
 Diagonal elements: ∑ 𝑋𝑝2𝑁

𝑝=1  
 Off-diagonal elements: ∑ 𝑋𝑝𝑎𝑋𝑝𝑏 

𝑁
𝑝=1  

 
• For our SAT example:  

𝐗𝑇𝐗 =

�𝑆𝑆𝑆𝑆𝑝2
𝑁

𝑝=1

� 𝑆𝑆𝑆𝑆𝑝𝑆𝑆𝑆𝑆𝑝

𝑁

𝑝=1

� 𝑆𝑆𝑆𝑆𝑝𝑆𝑆𝑆𝑆𝑝

𝑁

𝑝=1

�𝑆𝑆𝑆𝑆𝑝
2

𝑁

𝑝=1

= 251,797,800 251,928,400
251,928,400 254,862,700  
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Identity Matrix 

• The identity matrix is a matrix that, when pre- or post- multiplied by 
another matrix results in the original matrix: 

𝐀𝐀 = 𝐀 
𝐈𝐈 = 𝐀 

 
• The identity matrix is a square matrix that has: 

 Diagonal elements = 1 
 Off-diagonal elements = 0 

𝐼 3 𝑥 3 =
1 0 0
0 1 0
0 0 1
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Zero Vector 

• The zero vector is a column vector of zeros 

𝟎(3 𝑥 1) =
0
0
0

 

 

• When pre- or post- multiplied the result is the zero vector: 
𝐀𝟎 = 𝟎 
𝟎𝐀 = 𝟎 
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Ones Vector 

• A ones vector is a column vector of 1s: 

𝟏(3 𝑥 1) =
1
1
1

 

 
• The ones vector is useful for calculating statistical terms, such as the 

mean vector and the covariance matrix 
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Matrix “Division”: The Inverse Matrix 

• Division from algebra: 
 First:  𝑎

𝑏
= 1

𝑏
𝑎 = 𝑏−1𝑎 

 Second: 𝑎
𝑎

= 1 
 

• “Division” in matrices serves a similar role 
 For square and symmetric matrices, an inverse matrix is a matrix that when 

pre- or post- multiplied with another matrix produces the identity matrix: 
𝐀−1𝐀 = 𝐈 
𝐀𝐀−𝟏 = 𝐈 

 

• Calculation of the matrix inverse is complicated 
 Even computers have a tough time 

 

• Not all matrices can be inverted 
 Non-invertible matrices are called singular matrices 

 In statistics, singular matrices are commonly caused by linear dependencies 
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The Inverse 

• In data: the inverse shows up constantly in statistics 
 Models which assume some type of (multivariate) normality need an 

inverse covariance matrix 
 

• Using our SAT example 
 Our data matrix was size (1000 x 2), which is not invertible 
 However 𝐗𝑇𝐗 was size (2 x 2) – square, and symmetric 

𝐗𝑇𝐗 = 251,797,800 251,928,400
251,928,400 254,862,700  

 The inverse is: 

𝐗𝑇𝐗 −1 = 3.61𝐸 − 7 −3.57𝐸 − 7
−3.57𝐸 − 7 3.56𝐸 − 7  
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Matrix Determinants 
• A square matrix can be characterized by a scalar value called a 

determinant: 
det𝐀 = 𝐀  

 
• Calculation of the determinant is tedious 

 The determinant for the covariance matrix of our SAT example was 6,514,104.5 
 

• For two-by-two matrices 𝑎 𝑏
𝑐 𝑑 = 𝑎𝑎 − 𝑏𝑏 

 
• The determinant is useful in statistics: 

 Shows up in multivariate statistical distributions 
 Is a measure of “generalized” variance of multiple variables 

 
• If the determinant is positive, the matrix is called positive definite 

 Is invertible 
 

• If the determinant is not positive, the matrix is called  
non-positive definite 

 Not invertible  
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Matrix Trace 

• For a square matrix 𝐀 with V rows/columns, the trace is the sum of 
the diagonal elements: 

𝑡𝑡𝐀 = �𝑎𝑣𝑣

𝑉

𝑣=1

 

 
• For our data, the trace of the correlation matrix is 2 

 For all correlation matrices, the trace is equal to the number of variables 
because all diagonal elements are 1 

 
• The trace is considered the total variance in multivariate statistics 

 Used as a target to recover when applying statistical models 
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Matrix Algebra Operations (for help in reading stats manuals)  

• 𝐀 + 𝐁 + 𝐂 = 
𝐀 + (𝐁 + 𝐂) 

• 𝐀 + 𝐁 = 𝐁 + 𝐀 
• 𝑐 𝐀 + 𝐁 = 𝑐𝐀 + 𝑐𝐁 
• 𝑐 + 𝑑 𝐀 = 𝑐𝐀 + 𝑑𝐀 
• 𝐀 + 𝐁 𝑇 = 𝐀𝑇 + 𝐁𝑇 
• 𝑐𝑐 𝐀 = 𝑐(𝑑𝐀) 
• 𝑐𝐀 𝑇 = 𝑐𝐀𝑇 
• 𝑐 𝐀𝐀 = 𝑐𝐀 𝐁 
• 𝐀 𝐁𝐁 = 𝐀𝐀 𝐂 

 

• 𝐀 𝐁 + 𝐂 = 𝐀𝐀 + 𝐀𝐀 
• 𝐀𝐀 𝑇 = 𝐁𝑇𝐀𝑇 
• For 𝑥𝑗  such that 𝐴𝑥𝑗  exists: 

�𝐀𝐱𝑗 =
𝑁

𝑗=1

𝐀�𝐱𝑗

𝑁

𝑗=1

 

� 𝐀𝐱𝑗 𝐀𝐱𝑗
𝑇 =

𝑁

𝑗=1

 

𝐀 �𝐱𝑗𝐱𝑗𝑇
𝑁

𝑗=1

𝐀𝑇 
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MULTIVARIATE STATISTICS  
AND DISTRIBUTIONS 
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Multivariate Statistics 
• Up to this point in this course, we have focused on the prediction (or 

modeling) of a single variable 
 Conditional distributions (aka, generalized linear models) 

 
• Multivariate statistics is about exploring joint distributions 

 How variables relate to each other simultaneously 
 

• Therefore, we must adapt our conditional distributions to have multiple 
variables, simultaneously (later, as multiple outcomes) 
 

• We will now look at the joint distributions of two variables 𝑓 𝑥1, 𝑥2  or in 
matrix form: 𝑓 𝐗  (where 𝐗 is size N x 2; 𝑓 𝐗  gives a scalar/single 
number) 

 Beginning with two, then moving to anything more than two 
 We will begin by looking at multivariate descriptive statistics 

 Mean vectors and covariance matrices 
 

• Today, we will only consider the joint distribution of sets of variables – 
but next time we will put this into a GLM-like setup 

 The joint distribution will the be conditional on other variables 
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Multiple Means: The Mean Vector 

• We can use a vector to describe the set of means for our data 

𝐱� =
1
𝑁
𝐗𝑇𝟏 =

𝑥̅1
𝑥̅2
⋮
𝑥̅𝑉

 

 Here 𝟏 is a N x 1 vector of 1s 
 The resulting mean vector is a v x 1 vector of means 

 
• For our data: 

𝐱� = 499.32
499.27 = 𝑥̅𝑆𝑆𝑆𝑆

𝑥̅𝑆𝑆𝑆𝑆
 

• In SAS PROC IML: 
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Mean Vector: Graphically 

• The mean vector is the center of the distribution of  
both variables 
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Covariance of a Pair of Variables 

• The covariance is a measure of the relatedness 
 Expressed in the product of the units of the two variables: 

𝑠𝑥1𝑥2 =
1
𝑁
� 𝑥𝑝1 − 𝑥̅1 𝑥𝑝2 − 𝑥̅2

𝑁

𝑝=1

 

 The covariance between SATV and SATM was 3,132.22  
(in SAT Verbal-Maths) 

 The denominator N is the ML version – unbiased is N-1 
 

• Because the units of the covariance are difficult to understand, we 
more commonly describe association (correlation) between two 
variables with correlation 
 Covariance divided by the product of each variable’s standard deviation 
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Correlation of a Pair of Varibles 

• Correlation is covariance divided by the product of the standard 
deviation of each variable: 

𝑟𝑥1𝑥2 =
𝑠𝑥1𝑥2 

𝑠𝑥1
2 𝑠𝑥2

2
 

 The correlation between SATM and SATV was 0.78 

 
• Correlation is unitless – it only ranges between -1 and 1 

 If 𝑥1 and 𝑥2 both had variances of 1, the covariance between them would 
be a correlation 
 Covariance of standardized variables = correlation 
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Covariance and Correlation in Matrices 

• The covariance matrix (for any number of variables v) is found by: 

𝐒 =
1
𝑁

𝐗 − 𝟏𝐱�𝑇 𝑇 𝐗 − 𝟏𝐱�𝑇 =
𝑠𝑥1
2 ⋯ 𝑠𝑥1𝑥𝑉
⋮ ⋱ ⋮

𝑠𝑥1𝑥𝑉 ⋯ 𝑠𝑥𝑉
2

 

 
• In SAS PROC IML: 

 
 
 
 
 

• 𝐒 = 2,477.34 3,123.22
3,132.22 6,589.71  
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From Covariance to Correlation 

• If we take the SDs (the square root of the diagonal of the covariance 
matrix) and put them into a diagonal matrix 𝐃, the correlation 
matrix is found by: 

𝐑 = 𝐃−1𝐒𝐃−1 =

𝑠𝑥1
2

𝑠𝑥1
2 𝑠𝑥1

2
⋯

𝑠𝑥1𝑥𝑝

𝑠𝑥1
2 𝑠𝑥𝑉

2

⋮ ⋱ ⋮
𝑠𝑥1𝑥𝑉

𝑠𝑥1
2 𝑠𝑥𝑉

2
⋯

𝑠𝑥𝑉
2

𝑠𝑥𝑉
2 𝑠𝑥𝑉

2

=
1 ⋯ 𝑟𝑥1𝑥𝑉
⋮ ⋱ ⋮

𝑟𝑥1𝑥𝑉 ⋯ 1
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Example Covariance Matrix 

• For our data, the covariance matrix was: 

𝐒 = 2,477.34 3,123.22
3,132.22 6,589.71  

 
• The diagonal matrix 𝐃 was: 

𝐃 =
2,477.34 0

0 6,589.71
= 49.77 0

0 81.18  

 
• The correlation matrix 𝐑 was: 

𝐑 = 𝐃−1𝐒𝐃−1 =

1
49.77 0

0
1

81.18

2,477.34 3,123.22
3,132.22 6,589.71

1
49.77 0

0
1

81.18

 

𝐑 = 1.00 .78
.78 1.00  
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In SAS: 
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Generalized Variance 
• The determinant of the covariance matrix is the generalized variance 

Generalized Sample Variance =  𝐒  
 

• It is a measure of spread across all variables 
 Reflecting how much overlap (covariance) in variables occurs in the sample 
 Amount of overlap reduces the generalized sample variance 
 Generalized variance from our SAT example: 6,514,104.5 
 Generalized variance if zero covariance/correlation: 16,324,929 
 

 
 

• The generalized sample variance is: 
 Largest when variables are uncorrelated 
 Zero when variables form a linear dependency 

 
• In data: 

 The generalized variance is seldom used descriptively, but shows up more 
frequently in maximum likelihood functions 
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Total Sample Variance 

• The total sample variance is the sum of the variances of each 
variable in the sample 
 The sum of the diagonal elements of the sample covariance matrix 
 The trace of the sample covariance matrix 

𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =  �𝑠𝑥𝑖
2

𝑉

𝑣=1

= tr 𝐒  

• Total sample variance for our SAT example:  
 

• The total sample variance does not take into consideration the 
covariances among the variables 
 Will not equal zero if linearly dependency exists 

 
• In data: 

 The total sample variance is commonly used as the denominator (target) 
when calculating variance accounted for measures 
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MULTIVARIATE DISTRIBUTIONS 
(VARIABLES ≥ 2) 
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Multivariate Normal Distribution 

• The multivariate normal distribution is the generalization of the 
univariate normal distribution to multiple variables 
 The bivariate normal distribution just shown is part of the MVN 

 
• The MVN provides the relative likelihood of observing all V variables 

for a subject p simultaneously: 
𝐱𝑝 = 𝑥𝑝1 𝑥𝑝2 … 𝑥𝑝𝑝  

 
• The multivariate normal density function is: 

𝑓 𝐱𝑝 =
1

2𝜋
𝑉
2 𝚺

1
2

exp −
𝐱𝑝𝑇 − 𝝁 𝑇𝚺−1 𝐱𝑝𝑇 − 𝝁

2
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The Multivariate Normal Distribution 

𝑓 𝐱𝑝 =
1

2𝜋
𝑉
2 𝚺

1
2

exp −
𝐱𝑝𝑇 − 𝝁 𝑇𝚺−1 𝐱𝑝𝑇 − 𝝁

2
 

• The mean vector is 𝝁 =

𝜇𝑥1
𝜇𝑥2
⋮
𝜇𝑥𝑉

 

• The covariance matrix is 𝚺 =

𝜎𝑥1
2 𝜎𝑥1𝑥2 ⋯ 𝜎𝑥1𝑥𝑉

𝜎𝑥1𝑥2 𝜎𝑥2
2 ⋯ 𝜎𝑥2𝑥𝑉

⋮ ⋮ ⋱ ⋮
𝜎𝑥1𝑥𝑉 𝜎𝑥2𝑥𝑉 ⋯ 𝜎𝑥𝑉

2

 

 
 The covariance matrix must be non-singular (invertible) 
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Comparing Univariate and Multivariate Normal Distributions 

• The univariate normal distribution: 

𝑓 𝑥𝑝 =
1
2𝜋𝜎2

exp −
𝑥 − 𝜇 2

2𝜎2
 

 
• The univariate normal, rewritten with a little algebra: 

𝑓 𝑥𝑝 =
1

2𝜋
1
2|𝜎2|

1
2

exp −
𝑥 − 𝜇 𝜎−

1
2 𝑥 − 𝜇

2
 

 
• The multivariate normal distribution 

𝑓 𝐱𝑝 =
1

2𝜋
𝑉
2 𝚺

1
2

exp −
𝐱𝑝𝑇 − 𝝁 𝑇𝚺−1 𝐱𝑝𝑇 − 𝝁

2
 

 When 𝑉 = 1 (one variable), the MVN is a univariate normal distribution 
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The Exponent Term 

• The term in the exponent (without the −1
2
) is called the squared 

Mahalanobis Distance 
𝑑2 𝒙𝑝 = 𝐱𝑝𝑇 − 𝝁 𝑇𝚺−1 𝐱𝑝𝑇 − 𝝁  

 
 Sometimes called the statistical distance 

 
 Describes how far an observation is from its mean vector, in  

standardized units 
 

 Like a multivariate Z score (but, if data are MVN, is actually distributed as a 
𝜒2variable with DF = number of variables in X) 
 

 Can be used to assess if data follow MVN 
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Multivariate Normal Notation 

• Standard notation for the multivariate normal distribution of v 
variables is 𝑁𝑣 𝝁,𝚺  
 Our SAT example would use a bivariate normal: 𝑁2 𝝁,𝚺  

 

• In data: 
 The multivariate normal distribution serves as the basis for most every 

statistical technique commonly used in the social and educational sciences 
 General linear models (ANOVA, regression, MANOVA) 
 General linear mixed models (HLM/multilevel models) 
 Factor and structural equation models (EFA, CFA, SEM, path models) 
 Multiple imputation for missing data 

 
 Simply put, the world of commonly used statistics revolves around the 

multivariate normal distribution 
 Understanding it is the key to understanding many statistical methods 
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Bivariate Normal Plot #1 

𝝁 =
𝜇𝑥1
𝜇𝑥2

= 0
0 ,𝚺 =

𝜎𝑥1
2 𝜎𝑥1𝑥2

𝜎𝑥1𝑥2 𝜎𝑥2
2 = 1 0

0 1  

Density Surface (3D) Density Surface (2D): 
Contour Plot 
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Bivariate Normal Plot #2 (Multivariate Normal) 

𝝁 =
𝜇𝑥1
𝜇𝑥2

= 0
0 ,𝚺 =

𝜎𝑥1
2 𝜎𝑥1𝑥2

𝜎𝑥1𝑥2 𝜎𝑥2
2 = 1 .5

.5 1  

Density Surface (3D) Density Surface (2D): 
Contour Plot 
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Multivariate Normal Properties 

• The multivariate normal distribution has some useful properties 
that show up in statistical methods 
 

• If 𝐗 is distributed multivariate normally: 
1. Linear combinations of 𝐗 are normally distributed 

 
2. All subsets of 𝐗 are multivariate normally distributed 

 
3. A zero covariance between a pair of variables of 𝐗 implies that the 

variables are independent 
 

4. Conditional distributions of 𝐗 are multivariate normal 
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Multivariate Normal Distribution in PROC IML 

• To demonstrate how the MVN works, we will now investigate how 
the PDF provides the likelihood (height) for a given observation: 
 Here we will use the SAT data and assume the sample mean vector and 

covariance matrix are known to be the true: 

𝝁 = 499.32
498.27 ; 𝐒 = 2,477.34 3,123.22

3,132.22 6,589.71  

 

• We will compute the likelihood value for several observations (SEE 
EXAMPLE SAS SYNTAX FOR HOW THIS WORKS): 
 𝒙631,⋅ = 590 730 ; 𝑓 𝒙 = 0.00000087528 
 𝒙717,⋅ = 340 300 ; 𝑓 𝒙 = 0.00000037082 
 𝒙 = 𝒙� = 499.32 498.27 ; 𝑓 𝒙 = 0.0000624 

 

• Note: this is the height for these observations, not the joint 
likelihood across all the data  
 Next time we will use PROC MIXED to find the parameters in 𝝁 and 𝚺 using 

maximum likelihood 
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Likelihoods…From SAS 
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𝑓 𝐱𝑝 =
1

2𝜋
𝑣
2  𝚺

1
2

exp −
𝐱𝑝𝑇 − 𝝁 𝑇𝚺−1 𝐱𝑝𝑇 − 𝝁

2  



Wrapping Up 

• The last two classes set the stage to discuss multivariate statistical 
methods that use maximum likelihood 
 

• Matrix algebra was necessary so as to concisely talk about our 
distributions (which will soon be models) 
 

• The multivariate normal distribution will be necessary to 
understand as it is the most commonly used distribution for 
estimation of multivariate models 
 

• Friday we will get back into data analysis – but for multivariate 
observations…using SAS PROC MIXED 
 Each term of the MVN will be mapped onto the PROC MIXED output 
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