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Today’s Class 

• The conclusion of Friday’s lecture on matrix algebra 
 Matrix inverse 
 Zero/ones vector 
 Matrix identity 
 Matrix determinant 
 NOTE:  an introduction to principal components analysis will be relocated 

later in the semester 

 
• Putting matrix algebra to use in multivariate statistics 

 Mean vectors 
 Covariance matrices 

 

• The multivariate normal distribution 
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DATA EXAMPLE AND SAS 
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A Guiding Example 

• To demonstrate matrix algebra, we will make use of data 
• Imagine that somehow I collected data SAT test scores for both the 

Math (SATM) and Verbal (SATV) sections of 1,000 students 
 

• The descriptive statistics of this data set are given below: 
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The Data… 

In Excel: In SAS: 
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Matrix Computing: PROC IML 

• To help demonstrate the topics we will discuss today, I will be 
showing examples in SAS PROC IML 
 

• The Interactive Matrix Language (IML) is a scientific computing 
package in SAS that typically used for statistical routines that aren’t 
programed elsewhere in SAS 
 

• Useful documentation for IML: 
http://support.sas.com/documentation/cdl/en/imlug/64248/HTML/de
fault/viewer.htm#langref_toc.htm 
 
• A great web reference for IML: 
http://www.psych.yorku.ca/lab/sas/iml.htm 
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MATRIX ALGEBRA 

PSYC 943: Lecture 11 7 



Moving from Vectors to Matrices 

• A matrix can be thought of as a collection of vectors 
 Matrix operations are vector operations on steroids 

 

• Matrix algebra defines a set of operations and entities on matrices 
 I will present a version meant to mirror your previous algebra experiences 

 

• Definitions: 
 Identity matrix 
 Zero vector 
 Ones vector 

 

• Basic Operations: 
 Addition 
 Subtraction 
 Multiplication 
 “Division” 
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Matrix Addition and Subtraction 

• Matrix addition and subtraction are much like vector 
addition/subtraction 
 

• Rules: 
 Matrices must be the same size (rows and columns) 

 
• Method: 

 The new matrix is constructed of element-by-element addition/subtraction 
of the previous matrices 

 
• Order: 

 The order of the matrices (pre- and post-) does not matter 
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Matrix Addition/Subtraction  
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Matrix Multiplication 

• Matrix multiplication is a bit more complicated 
 The new matrix may be a different size from either of the two  

multiplying matrices 
𝐀(𝑟 𝑥 𝑐)𝐁(𝑐 𝑥 𝑘) = 𝐂(𝑟 𝑥 𝑘) 

• Rules: 
 Pre-multiplying matrix must have number of columns equal to the number 

of rows of the post-multiplying matrix 

 
• Method: 

 The elements of the new matrix consist of the inner (dot) product of the 
row vectors of the pre-multiplying matrix and the column vectors of the 
post-multiplying matrix  

 
• Order: 

 The order of the matrices (pre- and post-) matters 
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Matrix Multiplication 
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Multiplication in Statistics 

• Many statistical formulae with summation can be re-expressed  
with matrices 
 

• A common matrix multiplication form is: 𝐗𝑇𝐗 
 Diagonal elements: ∑ 𝑋𝑝2𝑁

𝑝=1  
 Off-diagonal elements: ∑ 𝑋𝑝𝑎𝑋𝑝𝑏 

𝑁
𝑝=1  

 
• For our SAT example:  

𝐗𝑇𝐗 =

�𝑆𝑆𝑆𝑆𝑝2
𝑁

𝑝=1

� 𝑆𝑆𝑆𝑆𝑝𝑆𝑆𝑆𝑆𝑝

𝑁

𝑝=1

� 𝑆𝑆𝑆𝑆𝑝𝑆𝑆𝑆𝑆𝑝

𝑁

𝑝=1

�𝑆𝑆𝑆𝑆𝑝
2

𝑁

𝑝=1

= 251,797,800 251,928,400
251,928,400 254,862,700  
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Identity Matrix 

• The identity matrix is a matrix that, when pre- or post- multiplied by 
another matrix results in the original matrix: 

𝐀𝐀 = 𝐀 
𝐀𝐀 = 𝐀 

 
• The identity matrix is a square matrix that has: 

 Diagonal elements = 1 
 Off-diagonal elements = 0 

𝐼 3 𝑥 3 =
1 0 0
0 1 0
0 0 1
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Zero Vector 

• The zero vector is a column vector of zeros 

𝟎(3 𝑥 1) =
0
0
0

 

 

• When pre- or post- multiplied the result is the zero vector: 
𝐀𝟎 = 𝟎 
𝟎𝐀 = 𝟎 
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Ones Vector 

• A ones vector is a column vector of 1s: 

𝟏(3 𝑥 1) =
1
1
1

 

 
• The ones vector is useful for calculating statistical terms, such as the 

mean vector and the covariance matrix 
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Matrix “Division”: The Inverse Matrix 

• Division from algebra: 
 First:  𝑎

𝑏
= 1

𝑏
𝑎 = 𝑏−1𝑎 

 Second: 𝑎
𝑎

= 1 
 

• “Division” in matrices serves a similar role 
 For square and symmetric matrices, an inverse matrix is a matrix that when 

pre- or post- multiplied with another matrix produces the identity matrix: 
𝐀−1𝐀 = 𝐀 
𝐀𝐀−𝟏 = 𝐀 

 

• Calculation of the matrix inverse is complicated 
 Even computers have a tough time 

 

• Not all matrices can be inverted 
 Non-invertible matrices are called singular matrices 

 In statistics, singular matrices are commonly caused by linear dependencies 
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The Inverse 

• In data: the inverse shows up constantly in statistics 
 Models which assume some type of (multivariate) normality need an 

inverse covariance matrix 
 

• Using our SAT example 
 Our data matrix was size (1000 x 2), which is not invertible 
 However 𝐗𝑇𝐗 was size (2 x 2) – square, and symmetric 

𝐗𝑇𝐗 = 251,797,800 251,928,400
251,928,400 254,862,700  

 The inverse is: 

𝐗𝑇𝐗 −1 = 3.61𝐸 − 7 −3.57𝐸 − 7
−3.57𝐸 − 7 3.56𝐸 − 7  
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Matrix Determinants 
• A square matrix can be characterized by a scalar value called a 

determinant: 
det𝐀 = 𝐀  

 
• Calculation of the determinant is tedious 

 The determinant for the covariance matrix of our SAT example was 6,514,104.5 
 

• For two-by-two matrices 𝑎 𝑏
𝑐 𝑑 = 𝑎𝑑 − 𝑏𝑐 

 
• The determinant is useful in statistics: 

 Shows up in multivariate statistical distributions 
 Is a measure of “generalized” variance of multiple variables 

 
• If the determinant is positive, the matrix is called positive definite 

 Is invertible 
 

• If the determinant is not positive, the matrix is called  
non-positive definite 

 Not invertible  
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Matrix Trace 

• For a square matrix 𝐀 with V rows/columns, the trace is the sum of 
the diagonal elements: 

𝑡𝑡𝐀 = �𝑎𝑣𝑣

𝑉

𝑣=1

 

 
• For our data, the trace of the correlation matrix is 2 

 For all correlation matrices, the trace is equal to the number of variables 
because all diagonal elements are 1 

 
• The trace is considered the total variance in multivariate statistics 

 Used as a target to recover when applying statistical models 
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Matrix Algebra Operations (for help in reading stats manuals)  

• 𝐀 + 𝐁 + 𝐂 = 
𝐀 + (𝐁 + 𝐂) 

• 𝐀 + 𝐁 = 𝐁 + 𝐀 
• 𝑐 𝐀 + 𝐁 = 𝑐𝐀 + 𝑐𝐁 
• 𝑐 + 𝑑 𝐀 = 𝑐𝐀 + 𝑑𝐀 
• 𝐀 + 𝐁 𝑇 = 𝐀𝑇 + 𝐁𝑇 
• 𝑐𝑑 𝐀 = 𝑐(𝑑𝐀) 
• 𝑐𝐀 𝑇 = 𝑐𝐀𝑇 
• 𝑐 𝐀𝐁 = 𝑐𝐀 𝐁 
• 𝐀 𝐁𝐂 = 𝐀𝐁 𝐂 

 

• 𝐀 𝐁 + 𝐂 = 𝐀𝐁 + 𝐀𝐂 
• 𝐀𝐁 𝑇 = 𝐁𝑇𝐀𝑇 
• For 𝑥𝑗  such that 𝑆𝑥𝑗  exists: 

�𝐀𝐱𝑗 =
𝑁

𝑗=1

𝐀�𝐱𝑗

𝑁

𝑗=1

 

� 𝐀𝐱𝑗 𝐀𝐱𝑗
𝑇 =

𝑁

𝑗=1

 

𝐀 �𝐱𝑗𝐱𝑗𝑇
𝑁

𝑗=1

𝐀𝑇 

PSYC 943: Lecture 11 21 



MULTIVARIATE STATISTICS  
AND DISTRIBUTIONS 
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Multivariate Statistics 
• Up to this point in this course, we have focused on the prediction (or 

modeling) of a single variable 
 Conditional distributions (aka, generalized linear models) 

 
• Multivariate statistics is about exploring joint distributions 

 How variables relate to each other simultaneously 
 

• Therefore, we must adapt our conditional distributions to have multiple 
variables, simultaneously (later, as multiple outcomes) 
 

• We will now look at the joint distributions of two variables 𝑓 𝑥1, 𝑥2  or in 
matrix form: 𝑓 𝐗  (where 𝐗 is size N x 2; 𝑓 𝐗  gives a scalar/single 
number) 

 Beginning with two, then moving to anything more than two 
 We will begin by looking at multivariate descriptive statistics 

 Mean vectors and covariance matrices 
 

• Today, we will only consider the joint distribution of sets of variables – 
but next time we will put this into a GLM-like setup 

 The joint distribution will the be conditional on other variables 
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Multiple Means: The Mean Vector 

• We can use a vector to describe the set of means for our data 

𝐱� =
1
𝑁
𝐗𝑇𝟏 =

�̅�1
�̅�2
⋮
�̅�𝑉

 

 Here 𝟏 is a N x 1 vector of 1s 
 The resulting mean vector is a v x 1 vector of means 

 
• For our data: 

𝐱� = 499.32
499.27 = �̅�𝑆𝑆𝑇𝑉

�̅�𝑆𝑆𝑇𝑆
 

• In SAS PROC IML: 
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Mean Vector: Graphically 

• The mean vector is the center of the distribution of  
both variables 
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Covariance of a Pair of Variables 

• The covariance is a measure of the relatedness 
 Expressed in the product of the units of the two variables: 

𝑠𝑥1𝑥2 =
1
𝑁
� 𝑥𝑝1 − �̅�1 𝑥𝑝2 − �̅�2

𝑁

𝑝=1

 

 The covariance between SATV and SATM was 3,132.22  
(in SAT Verbal-Maths) 

 The denominator N is the ML version – unbiased is N-1 
 

• Because the units of the covariance are difficult to understand, we 
more commonly describe association (correlation) between two 
variables with correlation 
 Covariance divided by the product of each variable’s standard deviation 
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Correlation of a Pair of Varibles 

• Correlation is covariance divided by the product of the standard 
deviation of each variable: 

𝑡𝑥1𝑥2 =
𝑠𝑥1𝑥2 

𝑠𝑥1
2 𝑠𝑥2

2
 

 The correlation between SATM and SATV was 0.78 

 
• Correlation is unitless – it only ranges between -1 and 1 

 If 𝑥1 and 𝑥2 both had variances of 1, the covariance between them would 
be a correlation 
 Covariance of standardized variables = correlation 
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Covariance and Correlation in Matrices 

• The covariance matrix (for any number of variables v) is found by: 

𝐒 =
1
𝑁

𝐗 − 𝟏𝐱�𝑇 𝑇 𝐗 − 𝟏𝐱�𝑇 =
𝑠𝑥1
2 ⋯ 𝑠𝑥1𝑥𝑉
⋮ ⋱ ⋮

𝑠𝑥1𝑥𝑉 ⋯ 𝑠𝑥𝑉
2

 

 
• In SAS PROC IML: 

 
 
 
 
 

• 𝐒 = 2,477.34 3,123.22
3,132.22 6,589.71  
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From Covariance to Correlation 

• If we take the SDs (the square root of the diagonal of the covariance 
matrix) and put them into a diagonal matrix 𝐃, the correlation 
matrix is found by: 

𝐑 = 𝐃−1𝐒𝐃−1 =

𝑠𝑥1
2

𝑠𝑥1
2 𝑠𝑥1

2
⋯

𝑠𝑥1𝑥𝑝

𝑠𝑥1
2 𝑠𝑥𝑉

2

⋮ ⋱ ⋮
𝑠𝑥1𝑥𝑉

𝑠𝑥1
2 𝑠𝑥𝑉

2
⋯

𝑠𝑥𝑉
2

𝑠𝑥𝑉
2 𝑠𝑥𝑉

2

=
1 ⋯ 𝑡𝑥1𝑥𝑉
⋮ ⋱ ⋮

𝑡𝑥1𝑥𝑉 ⋯ 1
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Example Covariance Matrix 

• For our data, the covariance matrix was: 

𝐒 = 2,477.34 3,123.22
3,132.22 6,589.71  

 
• The diagonal matrix 𝐃 was: 

𝐃 =
2,477.34 0

0 6,589.71
= 49.77 0

0 81.18  

 
• The correlation matrix 𝐑 was: 

𝐑 = 𝐃−1𝐒𝐃−1 =

1
49.77 0

0
1

81.18

2,477.34 3,123.22
3,132.22 6,589.71

1
49.77 0

0
1

81.18

 

𝐑 = 1.00 .78
.78 1.00  
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In SAS: 

PSYC 943: Lecture 11 31 



Generalized Variance 
• The determinant of the covariance matrix is the generalized variance 

Generalized Sample Variance =  𝐒  
 

• It is a measure of spread across all variables 
 Reflecting how much overlap (covariance) in variables occurs in the sample 
 Amount of overlap reduces the generalized sample variance 
 Generalized variance from our SAT example: 6,514,104.5 
 Generalized variance if zero covariance/correlation: 16,324,929 
 

 
 

• The generalized sample variance is: 
 Largest when variables are uncorrelated 
 Zero when variables form a linear dependency 

 
• In data: 

 The generalized variance is seldom used descriptively, but shows up more 
frequently in maximum likelihood functions 
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Total Sample Variance 

• The total sample variance is the sum of the variances of each 
variable in the sample 
 The sum of the diagonal elements of the sample covariance matrix 
 The trace of the sample covariance matrix 

𝑆𝑇𝑡𝑎𝑇 𝑆𝑎𝑆𝑆𝑇𝑆 𝑆𝑎𝑡𝑉𝑎𝑉𝑐𝑆 =  �𝑠𝑥𝑖
2

𝑉

𝑣=1

= tr 𝐒  

• Total sample variance for our SAT example:  
 

• The total sample variance does not take into consideration the 
covariances among the variables 
 Will not equal zero if linearly dependency exists 

 
• In data: 

 The total sample variance is commonly used as the denominator (target) 
when calculating variance accounted for measures 
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MULTIVARIATE DISTRIBUTIONS 
(VARIABLES ≥ 2) 
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Multivariate Normal Distribution 

• The multivariate normal distribution is the generalization of the 
univariate normal distribution to multiple variables 
 The bivariate normal distribution just shown is part of the MVN 

 
• The MVN provides the relative likelihood of observing all V variables 

for a subject p simultaneously: 
𝐱𝑝 = 𝑥𝑝1 𝑥𝑝2 … 𝑥𝑝𝑉  

 
• The multivariate normal density function is: 

𝑓 𝐱𝑝 =
1

2𝜋
𝑉
2 𝚺

1
2

exp −
𝐱𝑝𝑇 − 𝝁 𝑇𝚺−1 𝐱𝑝𝑇 − 𝝁

2
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The Multivariate Normal Distribution 

𝑓 𝐱𝑝 =
1

2𝜋
𝑉
2 𝚺

1
2

exp −
𝐱𝑝𝑇 − 𝝁 𝑇𝚺−1 𝐱𝑝𝑇 − 𝝁

2
 

• The mean vector is 𝝁 =

𝜇𝑥1
𝜇𝑥2
⋮
𝜇𝑥𝑉

 

• The covariance matrix is 𝚺 =

𝜎𝑥1
2 𝜎𝑥1𝑥2 ⋯ 𝜎𝑥1𝑥𝑉

𝜎𝑥1𝑥2 𝜎𝑥2
2 ⋯ 𝜎𝑥2𝑥𝑉

⋮ ⋮ ⋱ ⋮
𝜎𝑥1𝑥𝑉 𝜎𝑥2𝑥𝑉 ⋯ 𝜎𝑥𝑉

2

 

 
 The covariance matrix must be non-singular (invertible) 
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Comparing Univariate and Multivariate Normal Distributions 

• The univariate normal distribution: 

𝑓 𝑥𝑝 =
1
2𝜋𝜎2

exp −
𝑥 − 𝜇 2

2𝜎2
 

 
• The univariate normal, rewritten with a little algebra: 

𝑓 𝑥𝑝 =
1

2𝜋
1
2|𝜎2|

1
2

exp −
𝑥 − 𝜇 𝜎−

1
2 𝑥 − 𝜇

2
 

 
• The multivariate normal distribution 

𝑓 𝐱𝑝 =
1

2𝜋
𝑉
2 𝚺

1
2

exp −
𝐱𝑝𝑇 − 𝝁 𝑇𝚺−1 𝐱𝑝𝑇 − 𝝁

2
 

 When 𝑆 = 1 (one variable), the MVN is a univariate normal distribution 
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The Exponent Term 

• The term in the exponent (without the −1
2
) is called the squared 

Mahalanobis Distance 
𝑑2 𝒙𝑝 = 𝐱𝑝𝑇 − 𝝁 𝑇𝚺−1 𝐱𝑝𝑇 − 𝝁  

 
 Sometimes called the statistical distance 

 
 Describes how far an observation is from its mean vector, in  

standardized units 
 

 Like a multivariate Z score (but, if data are MVN, is actually distributed as a 
𝜒2variable with DF = number of variables in X) 
 

 Can be used to assess if data follow MVN 
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Multivariate Normal Notation 

• Standard notation for the multivariate normal distribution of v 
variables is 𝑁𝑣 𝝁,𝚺  
 Our SAT example would use a bivariate normal: 𝑁2 𝝁,𝚺  

 

• In data: 
 The multivariate normal distribution serves as the basis for most every 

statistical technique commonly used in the social and educational sciences 
 General linear models (ANOVA, regression, MANOVA) 
 General linear mixed models (HLM/multilevel models) 
 Factor and structural equation models (EFA, CFA, SEM, path models) 
 Multiple imputation for missing data 

 
 Simply put, the world of commonly used statistics revolves around the 

multivariate normal distribution 
 Understanding it is the key to understanding many statistical methods 
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Bivariate Normal Plot #1 

𝝁 =
𝜇𝑥1
𝜇𝑥2

= 0
0 ,𝚺 =

𝜎𝑥1
2 𝜎𝑥1𝑥2

𝜎𝑥1𝑥2 𝜎𝑥2
2 = 1 0

0 1  

Density Surface (3D) Density Surface (2D): 
Contour Plot 
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Bivariate Normal Plot #2 (Multivariate Normal) 

𝝁 =
𝜇𝑥1
𝜇𝑥2

= 0
0 ,𝚺 =

𝜎𝑥1
2 𝜎𝑥1𝑥2

𝜎𝑥1𝑥2 𝜎𝑥2
2 = 1 .5

.5 1  

Density Surface (3D) Density Surface (2D): 
Contour Plot 
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Multivariate Normal Properties 

• The multivariate normal distribution has some useful properties 
that show up in statistical methods 
 

• If 𝐗 is distributed multivariate normally: 
1. Linear combinations of 𝐗 are normally distributed 

 
2. All subsets of 𝐗 are multivariate normally distributed 

 
3. A zero covariance between a pair of variables of 𝐗 implies that the 

variables are independent 
 

4. Conditional distributions of 𝐗 are multivariate normal 
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Multivariate Normal Distribution in PROC IML 

• To demonstrate how the MVN works, we will now investigate how 
the PDF provides the likelihood (height) for a given observation: 
 Here we will use the SAT data and assume the sample mean vector and 

covariance matrix are known to be the true: 

𝝁 = 499.32
498.27 ; 𝐒 = 2,477.34 3,123.22

3,132.22 6,589.71  

 

• We will compute the likelihood value for several observations (SEE 
EXAMPLE SAS SYNTAX FOR HOW THIS WORKS): 
 𝒙631,⋅ = 590 730 ; 𝑓 𝒙 = 0.00000087528 
 𝒙717,⋅ = 340 300 ; 𝑓 𝒙 = 0.00000037082 
 𝒙 = 𝒙� = 499.32 498.27 ; 𝑓 𝒙 = 0.0000624 

 

• Note: this is the height for these observations, not the joint 
likelihood across all the data  
 Next time we will use PROC MIXED to find the parameters in 𝝁 and 𝚺 using 

maximum likelihood 
 

 

PSYC 943: Lecture 11 43 



Likelihoods…From SAS 
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𝑓 𝐱𝑝 =
1

2𝜋
𝑣
2  𝚺

1
2

exp −
𝐱𝑝𝑇 − 𝝁 𝑇𝚺−1 𝐱𝑝𝑇 − 𝝁

2  



Wrapping Up 

• The last two classes set the stage to discuss multivariate statistical 
methods that use maximum likelihood 
 

• Matrix algebra was necessary so as to concisely talk about our 
distributions (which will soon be models) 
 

• The multivariate normal distribution will be necessary to 
understand as it is the most commonly used distribution for 
estimation of multivariate models 
 

• Friday we will get back into data analysis – but for multivariate 
observations…using SAS PROC MIXED 
 Each term of the MVN will be mapped onto the PROC MIXED output 
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