A Introduction to Matrix Algebra and Principal Components Analysis

PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 10: September 28, 2012

Today's Class

- An introduction to matrix algebra
 - Scalars, vectors, and matrices
 - Basic matrix operations
 - > Advanced matrix operations
- An introduction to principal components analysis
- An introduction to SAS PROC IML
 - Interactive matrix language

Why Learning a Little Matrix Algebra is Important

- Matrix algebra is the alphabet of the language of statistics
 - > You will most likely encounter formulae with matrices very quickly
- For example, imagine you were interested in analyzing some repeated measures data...but things don't go as planned
 - From the SAS User's Guide (PROC MIXED):

Formulation of the Mixed Model

The previous general linear model is certainly a useful one (Sea although you still assume normality.

The mixed model is written as

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\gamma} + \boldsymbol{\varepsilon}$

where everything is the same as in the general linear model exe Henderson (1990) and Searle, Casella, and McCulloch (1992) fe

A key assumption in the foregoing analysis is that $\pmb{\gamma}$ and $\pmb{\epsilon}$ are

$$E\begin{bmatrix} \boldsymbol{\gamma}\\ \boldsymbol{\varepsilon} \end{bmatrix} = \begin{bmatrix} \boldsymbol{0}\\ \boldsymbol{0} \end{bmatrix}$$
$$Var\begin{bmatrix} \boldsymbol{\gamma}\\ \boldsymbol{\varepsilon} \end{bmatrix} = \begin{bmatrix} \mathbf{G} & \mathbf{0}\\ \mathbf{0} & \mathbf{R} \end{bmatrix}$$

The variance of y is, therefore, $\mathbf{V} = \mathbf{Z}\mathbf{G}\mathbf{Z}' + \mathbf{R}$. You can model

Estimating Covariance Parameters in the Mixed Model

Estimation is more difficult in the mixed model than in the general linear model. Not only do y $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'\mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$

However, it requires knowledge of V and, therefore, knowledge of G and R. Lacking such infc

In many situations, the best approach is to use *likelihood-based* methods, exploiting the ass (REML). A favorable theoretical property of ML and REML is that they accommodate data that

PROC MIXED constructs an objective function associated with ML or REML and maximizes i

ML:
$$l(\mathbf{G}, \mathbf{R}) = -\frac{1}{2} \log |\mathbf{V}| - \frac{1}{2} \mathbf{r}' \mathbf{V}^{-1} \mathbf{r} - \frac{n}{2} \log(2\pi)$$

REML:
$$l_R(\mathbf{G}, \mathbf{R}) = -\frac{1}{2} \log |\mathbf{V}| - \frac{1}{2} \log |\mathbf{X}' \mathbf{V}^{-1} \mathbf{X}| - \frac{1}{2} \mathbf{r}' \mathbf{V}^{-1} \mathbf{r} - \frac{n-p}{2} \log(2\pi) \}$$

where $\mathbf{r} = \mathbf{y} - \mathbf{X}(\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{y}$ and p is the rank of \mathbf{X} . PROC MIXED actually minimiz analytical details for implementing a QR-decomposition approach to the problem. Wolfinger, 1

- Nearly all multivariate statistical techniques are described with matrix algebra
- When new methods are developed, the first published work typically involves matrices
 - > It makes technical writing more concise formulae are smaller
- Have you seen:
 - $\succ (X^T X)^{-1} X^T y$
 - $\succ \Lambda \Phi \Lambda^T + \Psi$
- Useful tip: matrix algebra is a great way to get out of conversations and other awkward moments

Definitions

- We begin this class with some general definitions (from dictionary.com):
 - > Matrix:
 - 1. A rectangular array of numeric or algebraic quantities subject to mathematical operations
 - 2. The substrate on or within which a fungus grows

> Algebra:

- A branch of mathematics in which symbols, usually letters of the alphabet, represent numbers or members of a specified set and are used to represent quantities and to express general relationships that hold for all members of the set
- 2. A set together with a pair of **binary operations** defined on the set. Usually, the set and the operations include an **identity element**, and the operations are **commutative** or **associative**

Why Learn Matrix Algebra

- Matrix algebra can seem very abstract from the purposes of this class (and statistics in general)
- Learning matrix algebra is important for:
 - > Understanding how statistical methods work
 - And when to use them (or not use them)
 - > Understanding what statistical methods mean
 - Reading and writing results from new statistical methods
- Today's class is the first lecture of learning the language of multivariate statistics

DATA EXAMPLE AND SAS

A Guiding Example

- To demonstrate matrix algebra, we will make use of data
- Imagine that somehow I collected data SAT test scores for both the Math (SATM) and Verbal (SATV) sections of 1,000 students
- The descriptive statistics of this data set are given below:

Statistic	SATV	SATM			
Mean	499.3	498.3			
SD	49.8	81.2			
Correlation					
SATV	1.00	0.78			
SATM	0.78	1.00			

In Excel:

	🕱 🕞 🚽 😌 🖛 sat.csv - Microsoft Excel							
F	ile Hom	Inser Pa	ge Form	Data Re	/ie View	Add-] 🛆	3 - F	23
Pa	ste	Font Align	≣ % nment Num	ber Styles	Cells	Σ · ŽΥ· · ŽΥ·		
Enp	Δ1 Δ1		(=	fr SA	TV	Luting		~
	A1	P	6			E	G	Ξ
1	SATV	SATM	C	U	E	F	0	
2	520	580						
3	520	550						
4	460	440						
5	560	530						
6	430	440						
7	490	530						
ð	570	580						
10	490	540						
11	450	470						
12	510	560						
13	480	510						
14	470	420						
15	500	520						
16	480	470						
17	450	390						
18	500	480						
20	610	630						
21	450	410						
22	410	380						
23	460	460						

In SAS:

	satv	satm
1	520	580
2	520	550
3	460	440
4	560	530
5	430	440
6	490	530
7	570	580
8	530	570
9	490	540
10	450	470
11	510	560
12	480	510
13	470	420
14	500	520
15	480	470
16	450	390
17	500	480
18	510	500
19	610	630
20	450	410
21	410	380
22	460	460
23	500	530
24	540	500
25	500	510
26	530	560
27	540	550
28	500	530
29	490	570

Matrix Computing: PROC IML

- To help demonstrate the topics we will discuss today, I will be showing examples in SAS PROC IML
- The Interactive Matrix Language (IML) is a scientific computing package in SAS that typically used for statistical routines that aren't programed elsewhere in SAS
- Useful documentation for IML:

http://support.sas.com/documentation/cdl/en/imlug/64248/HTML/de fault/viewer.htm#langref_toc.htm

• A great web reference for IML:

http://www.psych.yorku.ca/lab/sas/iml.htm

PROC IML Basics

- Proc IML is a proc step in SAS that runs without needing to use a preliminary data step
- To use IML the following lines of syntax are placed in a SAS file:

PROC IML;
RESET PRINT;
*IML SYNTAX GOES IN HERE;
QUIT;

- The "reset print;" line makes every result get printed in the output window
- The IML syntax will go between the "reset print;" and the "quit;"

DEFINITIONS OF MATRICES, VECTORS, AND SCALARS

Matrices

- A matrix is a rectangular array of data
 - > Used for storing numbers
- Matrices can have unlimited dimensions
 - > For our purposes all matrices will have two dimensions:
 - Row
 - Columns
- Matrices are symbolized by **boldface** font in text, typically with capital letters
 SAT Verbal SAT Math

> Size (r rows x c columns) (Column 1) (Column 2)
$$\mathbf{X} = \begin{bmatrix} 520 & 580 \\ 520 & 550 \\ \vdots & \vdots \\ 540 & 660 \end{bmatrix}_{(1000 \ x \ 2)}$$

Vectors

- A vector is a matrix where one dimension is equal to size 1
 - > Column vector: a matrix of size $r \ge 1$

$$\mathbf{x}_{.1} = \begin{bmatrix} 520\\520\\\vdots\\540 \end{bmatrix}_{1000\ x\ 1}$$

> Row vector: a matrix of size 1 x c

 $x_{1.} = [520 \quad 580]_{1 \times 2}$

- Vectors are typically written in **boldface** font text, usually with lowercase letters
- The dots in the subscripts $x_{.1}$ and x_{1} . represent the dimension aggregated across in the vector
 - > x_1 is the first row and <u>all</u> columns of X
 - > $x_{.1}$ is the first column and <u>all</u> rows of X
- Sometimes the rows and columns are separated by a comma (making it) possible to read double-digits in either dimension)

Matrix Elements

- A matrix (or vector) is composed of a set of elements
 - > Each element is denoted by its position in the matrix (row and column)
- For our matrix of data X (size 1000 rows and 2 columns), each element is denoted by:

x_{ij}

- The first subscript is the index for the rows: i = 1,...,r (= 1000)
- > The second subscript is the index for the columns: j = 1,...,c (= 2)

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{1000,1} & x_{1000,2} \end{bmatrix}_{(1000 \ x \ 2)}$$

Scalars

- A scalar is just a single number
- The name scalar is important: the number "scales" a vector it can make a vector "longer" or "shorter"
- Scalars are typically written without boldface:

 $x_{11} = 520$

• Each element of a matrix is a scalar

Matrix Transpose

• The transpose of a matrix is a reorganization of the matrix by switching the indices for the rows and columns

$$\mathbf{X} = \begin{bmatrix} 520 & 580 \\ 520 & 550 \\ \vdots & \vdots \\ 540 & 660 \end{bmatrix}_{(1000 \ x \ 2)}$$

$$\mathbf{X}^{T} = \begin{bmatrix} 520 & 520 & \cdots & 540 \\ 580 & 550 & \cdots & 660 \end{bmatrix}_{(2 \ x \ 1000)}$$

- An element x_{ij} in the original matrix **X** is now x_{ji} in the transposed matrix **X**^T
- Transposes are used to align matrices for operations where the sizes of matrices matter (such as matrix multiplication)

Types of Matrices

- <u>Square Matrix</u>: A square matrix has the same number of rows and columns
 - Correlation/covariance matrices are square matrices
- Diagonal Matrix: A diagonal matrix is a square matrix with non-zero diagonal elements $(x_{ij} \neq 0 \text{ for } i = j)$ and zeros on the off-diagonal elements $(x_{ij} = 0 \text{ for } i \neq j)$: [2.759 0 0]

$$\mathbf{A} = \begin{bmatrix} 2.739 & 0 & 0 \\ 0 & 1.643 & 0 \\ 0 & 0 & 0.879 \end{bmatrix}$$

- > We will use diagonal matrices to form correlation matrices
- **Symmetric Matrix:** A symmetric matrix is a square matrix where all elements are reflected across the diagonal ($a_{ij} = a_{ji}$)
 - Correlation and covariance matrices are symmetric matrices

VECTORS

Vectors in Space...

- Vectors (row or column) can be represented as lines on a Cartesian coordinate system (a graph)
- Consider the vectors: $\mathbf{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
- A graph of these vectors would be:

• <u>Question:</u> how would a column vector for each of our example variables (SATM and SATV) be plotted?

Vector Length

- The length of a vector emanating from the origin is given by the Pythagorean formula
 - > This is also called the Euclidean distance between the endpoint of the vector and the origin

$$L_{\mathbf{x}} = \sqrt{x_{11}^2 + x_{21}^2 + \dots + x_{r1}^2} = \|\mathbf{x}\|$$

- From the last slide: $\|\mathbf{a}\| = \sqrt{5} = 2.24$; $\|\mathbf{b}\| = \sqrt{13} = 3.61$
- From our data:
 ||SATV|| = 15,868.138; ||SATM|| = 15,964.42
- In data: length is an analog to the standard deviation
 - In mean-centered variables, the length is the square root of the sum of mean deviations (not quite the SD, but close)

Vector Addition

- Vectors can be added together so that a new vector is formed
- Vector addition is done element-wise, by adding each of the respective elements together:
 - > The new vector has the same number of rows and columns

$$\mathbf{c} = \mathbf{a} + \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

- > Geometrically, this creates a new vector along either of the previous two
 - Starting at the origin and ending at a new point in space
- In Data: a new variable (say, SAT total) is the result of vector addition

$$SAT_{TOTAL} = x_{.1} + x_{.2}$$

Vector Addition: Geometrically

Vector Multiplication by Scalar

- Vectors can be multiplied by scalars
 - > All elements are multiplied by the scalar

$$\mathbf{d} = 2\mathbf{a} = 2\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}2\\4\end{bmatrix}$$

• Scalar multiplication changes the length of the vector:

$$\|\mathbf{d}\| = \sqrt{2^2 + 4^2} = \sqrt{20} = 4.47$$

- This is where the term scalar comes from: a scalar ends up "rescaling" (resizing) a vector
- In Data: the GLM (where X is a matrix of data) the fixed effects (slopes) are scalars multiplying the data

Scalar Multiplication: Geometrically

Linear Combinations

 Addition of a set of vectors (all multiplied by scalars) is called a linear combination:

$$\mathbf{y} = a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \dots + a_k \mathbf{x}_k$$

- Here, **y** is the linear combination
 - For all k vectors, the set of all possible linear combinations is called their span
 - > Typically not thought of in most analyses but when working with things that don't exist (latent variables) becomes somewhat important
- **<u>In Data</u>**: linear combinations happen frequently:
 - Linear models (i.e., Regression and ANOVA)
 - Principal components analysis (later today)

Linear Dependencies

- A set of vectors are said to be linearly dependent if
 a₁x₁ + a₂x₂ + ··· + a_kx_k = 0
 -and a₁, a₂, ..., a_k are all not zero
- Example: let's make a new variable SAT Total: $SAT_{total} = 1 * SATV + 1 * SATM$
- The new variable is linearly dependent with the others:
 1 * SATV + 1 * SATM 1 * SAT_{total} = 0
- <u>In Data</u>: (multi) collinearity is a linear dependency. Linear dependencies are bad for statistical analyses that use matrix inverses (discussed soon).

Normalizing Vectors

 Normalizing vectors is the process of rescaling a vector (multiplication by scalar) so that the length of the vector is equal to one:

$$\mathbf{x}_{norm} = \frac{\mathbf{x}}{\|\mathbf{x}\|}$$

• From our example vector:

$$\mathbf{a}_{norm} = \frac{\mathbf{a}}{\|\mathbf{a}\|} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}}\\ \frac{2}{\sqrt{5}} \end{bmatrix}$$

• As such, the length of the vector is:

$$\|\mathbf{a}\| = \sqrt{\left(\frac{1}{\sqrt{5}}\right)^2 + \left(\frac{2}{\sqrt{5}}\right)^2} = 1$$

- We will encounter normalized vectors later today in principal components analysis
- Generally speaking, entities that have no real space (such as principal components and "latent" factors) have corresponding vectors that are normalized
 - Normalization allows for a solution to be found
 - > It's an arbitrary standard (but one that is well agreed upon)

Inner (Dot) Product of Vectors

- An important concept in vector geometry is that of the inner product of two vectors
 - > The inner product is also called the dot product

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b} = a_{11} b_{11} + a_{21} b_{21} + \dots + a_{N1} b_{N1} = \sum_{i=1}^N a_{i1} b_{i1}$$

- The dot or inner product is related to the angle between vectors and to the projection of one vector onto another
- From our example: $\mathbf{a} \cdot \mathbf{b} = 1 * 2 + 2 * 3 = 8$
- From our data: $x_{.1} \cdot x_{.2} = 251,928,400$
- <u>In data</u>: the angle between vectors is related to the correlation between variables and the projection is related to regression/ANOVA/linear models

N T

Angle Between Vectors

 As vectors are conceptualized geometrically, the angle between two vectors can be calculated

$$\theta_{ab} = \cos^{-1} \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} \right)$$

• From the example:

$$\theta_{ab} = \cos^{-1}\left(\frac{8}{\sqrt{5}\sqrt{13}}\right) = 0.12$$

• From our data:

$$\theta_{SATV,SATM} = \cos^{-1} \left(\frac{251,928,400}{\sqrt{15,868.138}\sqrt{15,946.42}} \right) = 0.105$$

In Data: Cosine Angle = Correlation

- If you have data that are:
 - Placed into vectors
 - > Centered by the mean (subtract the mean from each observation)
- ...then the cosine of the angle between those vectors is the correlation between the variables:

$$r_{ab} = \cos(\theta_{ab}) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{\sum_{i=1}^{N} (a_{i1} - \bar{a}) (b_{i1} - \bar{b})}{\sqrt{\sum_{i=1}^{N} (a_{i1} - \bar{a})^2} \sqrt{\sum_{i=1}^{N} (b_{i1} - \bar{b})^2}}$$

For the SAT example data (using mean centered variables):

$$r_{SATV,SATM} = \cos(\theta_{SATVC,SATMC}) = \cos\left(\frac{3,132,223.6}{1,573.956 * 2,567.0425}\right)$$
$$= .775$$

Vector Projections

- A final vector property that shows up in statistical terms frequently is that of a projection
- The projection of a vector a onto b is the orthogonal projection of a onto the straight line defined by b
 - > The projection is the "shadow" of one vector onto the other:

Vector Projections Example

• To provide a bit more context for vector projections, let's consider the projection of SATV onto SATM:

$$SATV_{\text{proj }SATM} = \frac{SATV \cdot SATM}{\|SATM\|^2} SATM$$

• The first portion turns out to be:

 $\frac{SATV \cdot SATM}{\|SATM\|^2} = \frac{251,928,400}{\|15,964.42\|^2} = .475$

This is also the regression slope β_1 : X_1 $SATV_p = \beta_0 + \beta_1 SATM_p + e_p$ colX $\widehat{\varepsilon} = v - X\widehat{\beta}$ $\widehat{\beta}_1 X$ The GLM Procedure Dependent Variable: satv Parameter X_2 Estimate $\widehat{\beta}_2 X_2$ 262.4819995 Intercept 0.4753206 satm

MATRIX ALGEBRA

Moving from Vectors to Matrices

- A matrix can be thought of as a collection of vectors
 - > Matrix operations are vector operations on steroids
- Matrix algebra defines a set of operations and entities on matrices
 - > I will present a version meant to mirror your previous algebra experiences
- Definitions:
 - > Identity matrix
 - > Zero vector
 - Ones vector
- Basic Operations:
 - Addition
 - Subtraction
 - Multiplication
 - > "Division"

Matrix Addition and Subtraction

- Matrix addition and subtraction are much like vector addition/subtraction
- Rules:
 - > Matrices must be the same size (rows and columns)
- Method:
 - The new matrix is constructed of element-by-element addition/subtraction of the previous matrices
- Order:
 - > The order of the matrices (pre- and post-) does not matter

Matrix Addition/Subtraction

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \qquad \qquad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \\ b_{41} & b_{42} \end{bmatrix}$$

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \\ a_{31} + b_{31} & a_{32} + b_{32} \\ a_{41} + b_{41} & a_{42} + b_{42} \end{bmatrix} \qquad \mathbf{A} - \mathbf{B} = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} \\ a_{21} - b_{21} & a_{22} - b_{22} \\ a_{31} - b_{31} & a_{32} - b_{32} \\ a_{41} - b_{41} & a_{42} - b_{42} \end{bmatrix}$$

Matrix Multiplication

- Matrix multiplication is a bit more complicated
 - The new matrix may be a different size from either of the two multiplying matrices

$$\mathbf{A}_{(r\,x\,c)}\mathbf{B}_{(c\,x\,k)} = \mathbf{C}_{(r\,x\,k)}$$

- Rules:
 - Pre-multiplying matrix must have number of columns equal to the number of rows of the post-multiplying matrix
- Method:
 - The elements of the new matrix consist of the inner (dot) product of the row vectors of the pre-multiplying matrix and the column vectors of the post-multiplying matrix
- Order:
 - > The order of the matrices (pre- and post-) matters

Matrix Multiplication

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

$$\mathbf{AB} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \\ a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \\ a_{41}b_{11} + a_{42}b_{21} & a_{41}b_{12} + a_{42}b_{22} & a_{41}b_{13} + a_{42}b_{23} \end{bmatrix}$$

Multiplication in Statistics

- Many statistical formulae with summation can be re-expressed with matrices
- A common matrix multiplication form is: $\mathbf{X}^T \mathbf{X}$
 - > Diagonal elements: $\sum_{i=1}^{N} X_i^2$
 - > Off-diagonal elements: $\sum_{i=1}^{N} X_{ia} X_{ib}$
- For our SAT example:

$$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} \sum_{i=1}^{N} SATV_{i}^{2} & \sum_{i=1}^{N} SATV_{i}SATM_{i} \\ \sum_{i=1}^{N} SATV_{i}SATM_{i} & \sum_{i=1}^{N} SATM_{i}^{2} \\ = \begin{bmatrix} 251,797,800 & 251,928,400 \\ 251,928,400 & 254,862,700 \end{bmatrix}$$

Identity Matrix

 The identity matrix is a matrix that, when pre- or post- multiplied by another matrix results in the original matrix:

```
  AI = A \\ IA = A
```

- The identity matrix is a square matrix that has:
 - Diagonal elements = 1
 - > Off-diagonal elements = 0

$$I_{(3\,x\,3)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Zero Vector

- The zero vector is a column vector of zeros $\mathbf{0}_{(3\ x\ 1)} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$
- When pre- or post- multiplied the result is the zero vector:

$$\begin{array}{l} \mathbf{A0} = \mathbf{0} \\ \mathbf{0A} = \mathbf{0} \end{array}$$

Ones Vector

• A ones vector is a column vector of 1s:

$$\mathbf{1}_{(3\,x\,1)} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

• The ones vector is useful for calculating statistical terms, such as the mean vector and the covariance matrix

Matrix "Division": The Inverse Matrix

• Division from algebra:

- "Division" in matrices serves a similar role
 - For square and symmetric matrices, an inverse matrix is a matrix that when pre- or post- multiplied with another matrix produces the identity matrix:

$$A^{-1}A = I$$
$$AA^{-1} = I$$

- Calculation of the matrix inverse is complicated
 - > Even computers have a tough time
- Not all matrices can be inverted
 - Non-invertible matrices are called singular matrices
 - In statistics, singular matrices are commonly caused by linear dependencies

The Inverse

- In data: the inverse shows up constantly in statistics
 - Models which assume some type of (multivariate) normality need an inverse covariance matrix
- Using our SAT example
 - > Our data matrix was size (1000 x 2), which is not invertible
 - > However $\mathbf{X}^T \mathbf{X}$ was size (2 x 2) square, and symmetric $\mathbf{X}^T \mathbf{X} = \begin{bmatrix} 251,797,800 & 251,928,400 \end{bmatrix}$

$$\mathbf{X}^{T} \mathbf{X} = \begin{bmatrix} 251,777,800 & 251,720,100\\ 251,928,400 & 254,862,700 \end{bmatrix}$$

> The inverse is:

$$(\mathbf{X}^T \mathbf{X})^{-1} = \begin{bmatrix} 3.61E - 7 & -3.57E - 7 \\ -3.57E - 7 & 3.56E - 7 \end{bmatrix}$$

Matrix Algebra Operations

- $(\mathbf{A} + \mathbf{B}) + \mathbf{C} =$ $\mathbf{A} + (\mathbf{B} + \mathbf{C})$
- $\bullet \ \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$
- $c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$
- $(c+d)\mathbf{A} = c\mathbf{A} + d\mathbf{A}$
- $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$
- $(cd)\mathbf{A} = c(d\mathbf{A})$
- $(c\mathbf{A})^T = c\mathbf{A}^T$
- $c(\mathbf{AB}) = (c\mathbf{A})\mathbf{B}$
- A(BC) = (AB)C

- A(B + C) = AB + AC
- $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$
- For x_i such that Ax_i exists: $\sum_{j=1}^{j} \mathbf{A} \mathbf{x}_j = \mathbf{A} \sum_{i=1}^{j} \mathbf{x}_i$ $\sum_{i=1}^{T} (\mathbf{A}\mathbf{x}_{j}) (\mathbf{A}\mathbf{x}_{j})^{T} =$ $\mathbf{A}\left(\sum_{i=1}^{N}\mathbf{x}_{j}\mathbf{x}_{j}^{T}\right)\mathbf{A}^{T}$

ADVANCED MATRIX OPERATIONS

Advanced Matrix Functions/Operations

- We end our matrix discussion with some advanced topics
 - > All related to multivariate statistical analysis
- To help us throughout, let's consider the correlation matrix of our SAT data:

$$\mathbf{R} = \begin{bmatrix} 1.00 & 0.78\\ 0.78 & 1.00 \end{bmatrix}$$

Matrix Trace

 For a square matrix A with p rows/columns, the trace is the sum of the diagonal elements:

$$tr\mathbf{A} = \sum_{i=1}^{p} a_{ii}$$

- For our data, the trace of the correlation matrix is 2
 - For all correlation matrices, the trace is equal to the number of variables because all diagonal elements are 1
- The trace is considered the total variance in multivariate statistics
 - > Used as a target to recover when applying statistical models

Matrix Determinants

• A square matrix can be characterized by a scalar value called a determinant:

$$\det \mathbf{A} = |\mathbf{A}|$$

- Calculation of the determinant is tedious
 - > Our determinant was 0.3916
- The determinant is useful in statistics:
 - > Shows up in multivariate statistical distributions
 - Is a measure of "generalized" variance of multiple variables
- If the determinant is positive, the matrix is called **positive definite** > Is invertible
- If the determinant is not positive, the matrix is called non-positive definite
 - Not invertible

Matrix Orthogonality

- A square matrix A is said to be orthogonal if:
 AA^T = A^TA = I
- Orthogonal matrices are characterized by two properties:
 - 1. The dot product of all row vector multiples is the zero vector
 - Meaning vectors are orthogonal (or uncorrelated)
 - 2. For each row vector, the sum of all elements is one
 - Meaning vectors are "normalized"
- The matrix above is also called **orthonormal**
- Orthonormal matrices are used in principal components

Eigenvalues and Eigenvectors

- A square matrix A can be decomposed into a set of eigenvalues λ and a set of eigenvectors e

 $\mathbf{A}\mathbf{e} = \lambda \mathbf{e}$

- Each eigenvalue has a corresponding eigenvector
 - > The number equal to the number of rows/columns of A
 - > The eigenvectors are all orthogonal
- In many classical multivariate statistics, eigenvalues and eigenvectors are used very frequently
 - > We will see their use in principal components shortly

Eigenvalues and Eigenvectors Example

• In our SAT example, the two eigenvalues obtained were:

 $\begin{array}{l} \lambda_1 = 1.78 \\ \lambda_2 = 0.22 \end{array}$

• The two eigenvectors obtained were:

$$\mathbf{e}_1 = \begin{bmatrix} 0.71\\ 0.71 \end{bmatrix}; \mathbf{e}_2 = \begin{bmatrix} 0.71\\ -0.71 \end{bmatrix}$$

 These terms will have much greater meaning in one moment (principal components analysis)

Spectral Decomposition

 Using the eigenvalues and eigenvectors, we can reconstruct the original matrix using a spectral decomposition:

$$\mathbf{A} = \sum_{\nu=1}^{V} \lambda_{\nu} \mathbf{e}_{\nu} \mathbf{e}_{\nu}^{T}$$

- > Here v is the index for variable (with a total of V variables)
- For our example, we can get back to our original matrix:

$$\mathbf{R}_{1} = \lambda_{1} \mathbf{e}_{1} \mathbf{e}_{1}^{T} = 1.78 \begin{bmatrix} .71\\.71 \end{bmatrix} \begin{bmatrix} .71 & .71 \end{bmatrix} = \begin{bmatrix} .89 & .89\\.89 & .89 \end{bmatrix}$$

$$\mathbf{R}_{2} = \mathbf{R}_{1} + \lambda_{2} \mathbf{e}_{2} \mathbf{e}_{2}^{T} = \begin{bmatrix} .89 & .89 \\ .89 & .89 \end{bmatrix} + 0.22 \begin{bmatrix} .71 \\ -.71 \end{bmatrix} \begin{bmatrix} .71 & -.71 \end{bmatrix} \\ = \begin{bmatrix} 1.00 & 0.78 \\ 0.78 & 1.00 \end{bmatrix}$$

Additional Eigenvalue Properties

• The matrix trace can be found by the sum of the eigenvalues:

$$tr\mathbf{A} = \sum_{\nu=1}^{\nu} \lambda_{\nu}$$

T 7

> In our example, the $tr\mathbf{R} = 1.78 + .22 = 2$

• The matrix determinant can be found by the product of the eigenvalues

$$|\mathbf{A}| = \prod_{v=1}^{V} \lambda_v$$

> In our example $|\mathbf{R}| = 1.78 * .22 = .3916$

AN INTRODUCTION TO PRINCIPAL COMPONENTS ANALYSIS

PCA Overview

- Principal Components Analysis (PCA) is a method for re-expressing the covariance (correlation) between a set of variables
 - The re-expression comes from creating a set of new variables (linear combinations) of the original variables
- PCA has two objectives:
 - 1. Data reduction
 - Moving from many original variables down to a few "components"
 - 2. Interpretation
 - Determining which original variables contribute most to the new "components"
- My objective: use PCA to demonstrate eigenvalues and eigenvectors

Goals of PCA

- The goal of PCA is to find a set of k principal components (composite variables) that:
 - > Is much smaller in number than the original set of V variables
 - > Accounts for nearly all of the total variance
 - Total variance = trace of covariance/correlation matrix
- If these two goals can be accomplished, then the set of k principal components contains almost as much information as the original V variables
 - Meaning the components can now replace the original variables in any subsequent analyses

PCA Features

- PCA often reveals relationships between variables that were not previously suspected
 - > New interpretations of data and variables often stem from PCA
- PCA usually serves as more of a means to an end rather than an end it itself
 - Components (the new variables) are often used in other statistical techniques
 - Multiple regression
 - Cluster analysis
- PCA is often intermixed with Exploratory Factor Analysis
 - > Don't. Please don't. Please help make it stop.

PCA Details

- Notation: let Y denote our new principal components and let X be our original data matrix (with N people and V variables)
 - > We will let p be our index for a person
- The new components are linear combinations:

$$Y_{p1} = \mathbf{e}_{1}^{T} \mathbf{X} = e_{11} X_{p1} + e_{21} X_{p2} + \dots + e_{V1} X_{pV}$$
$$Y_{p2} = \mathbf{e}_{2}^{T} \mathbf{X} = e_{12} X_{p1} + e_{22} X_{p2} + \dots + e_{V2} X_{pV}$$
$$\vdots$$
$$Y_{pV} = \mathbf{e}_{V}^{T} \mathbf{X} = e_{1V} X_{p1} + e_{2V} X_{p2} + \dots + e_{VV} X_{pV}$$

- The weights of the components (e_{vk}) come from the eigenvectors of the covariance or correlation matrix
 - \succ Each variable v has a weight for each component k

Details About the Components

- The components (Y) are formed by the weights of the eigenvectors of the covariance or correlation matrix of the original data
 - The variance of a component is given by the eigenvalue associated with the eigenvector for the component
- Using the eigenvalue and eigenvectors means:
 - > Each successive component has lower variance
 - Var(Y₁) > Var(Y₂) > ... > Var(Y_p)
 - > All components are uncorrelated
 - The sum of the variances of the principal components is equal to the total variance:

$$\sum_{\nu=1}^{V} Var(Y_{\nu}) = tr\mathbf{R} = \sum_{\nu=1}^{V} \lambda_{\nu}$$

PCA on our Example

- We will now conduct a PCA on the correlation matrix of our sample data
 - This example is given for demonstration purposes typically we will not do PCA on small numbers of variables

SATV

PCA in SAS

The SAS procedure that does principal components is called proc princomp:

proc princomp data=sat out=pcsat_cor; var satv satm; run;

• The results (look familiar?):

Eigenvalues of the Correlation Matrix

	Eigenvalue	Difference	Proportion	Cumulative
1	1.77522381	1.55044763	0.8876	0.8876
2	0.22477619		0.1124	1.0000
-	0.224(1013		0.1124	1.000

			1.0	
	ner	nuer	<u>eto</u>	12
-	90.			

	Print	Pr in2
SATV	0.707107	0.707107
SATM	0.707107	707107

Graphical Representation

- Plotting the components and the original data side by side reveals the nature of PCA:
 - > Shown from PCA of covariance matrix

Prinl

PCA Summary

- This introduction to PCA was meant to help describe the nature of eigenvalues and eigenvectors
 - > Many classical multivariate statistics use these terms
- We will return to PCA in the last week of class when we discuss inferences about covariances in multivariate data using exploratory and confirmatory factor models
- Eigenvalues and eigenvectors will reappear in the next 2-3 weeks
 - > The basis for classical Multivariate ANOVA
 - Modern versions have moved away from these terms
 - But they still are useful
 - > They do show up from time to time in other places as well

WRAPPING UP

Wrapping Up

- Matrix algebra is the language of multivariate statistics
 - Learning the basics will help you read work (both new old)
- Over the course of the rest of the semester, we will use matrix algebra frequently
 - It provides for more concise formulae
- In practice, we will use matrix algebra very little
 - But understanding how it works is the key to understanding how statistical methods work and are related
- Up next: multivariate statistical distributions
 - The basis for modern estimation methods of multivariate statistical models using maximum likelihood or Bayesian estimation