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Today’s Class 

• An introduction to matrix algebra 
 Scalars, vectors, and matrices  
 Basic matrix operations 
 Advanced matrix operations 

 

• An introduction to principal components analysis 
 

• An introduction to SAS PROC IML  
 Interactive matrix language 
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Why Learning a Little Matrix Algebra is Important 

• Matrix algebra is the alphabet of the language of statistics 
 You will most likely encounter formulae with matrices very quickly 

 

• For example, imagine you were interested in analyzing some 
repeated measures data…but things don’t go as planned 
 From the SAS User’s Guide (PROC MIXED): 
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Introduction and Motivation 

• Nearly all multivariate statistical techniques are described with 
matrix algebra 
 

• When new methods are developed, the first published work 
typically involves matrices 
 It makes technical writing more concise – formulae are smaller 

 

• Have you seen: 
 𝑿𝑇𝑿 −1𝑿𝑇𝒚 
 𝚲𝚲𝚲𝑇 + 𝚿 

 
• Useful tip: matrix algebra is a great way to get out of conversations 

and other awkward moments 
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Definitions 

• We begin this class with some general definitions (from 
dictionary.com): 
 Matrix: 
1. A rectangular array of numeric or algebraic quantities subject to 

mathematical operations 
2. The substrate on or within which a fungus grows 

 
 Algebra: 
1. A branch of mathematics in which symbols, usually letters of the alphabet, 

represent numbers or members of a specified set and are used to 
represent quantities and to express general relationships that hold for all 
members of the set 
 

2. A set together with a pair of binary operations defined on the set. Usually, 
the set and the operations include an identity element, and the 
operations are commutative or associative 
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Why Learn Matrix Algebra 

• Matrix algebra can seem very abstract from the purposes of this 
class (and statistics in general) 
 

• Learning matrix algebra is important for: 
 Understanding how statistical methods work 

 And when to use them (or not use them) 
 Understanding what statistical methods mean 
 Reading and writing results from new statistical methods 

 
• Today’s class is the first lecture of learning the language of 

multivariate statistics 
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DATA EXAMPLE AND SAS 
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A Guiding Example 

• To demonstrate matrix algebra, we will make use of data 
• Imagine that somehow I collected data SAT test scores for both the 

Math (SATM) and Verbal (SATV) sections of 1,000 students 
 

• The descriptive statistics of this data set are given below: 
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The Data… 

In Excel: In SAS: 
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Matrix Computing: PROC IML 

• To help demonstrate the topics we will discuss today, I will be 
showing examples in SAS PROC IML 
 

• The Interactive Matrix Language (IML) is a scientific computing 
package in SAS that typically used for statistical routines that aren’t 
programed elsewhere in SAS 
 

• Useful documentation for IML: 
http://support.sas.com/documentation/cdl/en/imlug/64248/HTML/de
fault/viewer.htm#langref_toc.htm 
 
• A great web reference for IML: 
http://www.psych.yorku.ca/lab/sas/iml.htm 
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PROC IML Basics 

• Proc IML is a proc step in SAS that runs without needing to use a 
preliminary data step 
 

• To use IML the following lines of syntax are placed in a SAS file: 
 
 
 
 
 

• The “reset print;” line makes every result get printed in the  
output window 
 

• The IML syntax will go between the “reset print;” and the “quit;” 
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DEFINITIONS OF MATRICES, 
VECTORS, AND SCALARS 
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Matrices 

• A matrix is a rectangular array of data 
 Used for storing numbers 

 

• Matrices can have unlimited dimensions 
 For our purposes all matrices will have two dimensions: 

 Row 
 Columns 

 

• Matrices are symbolized by boldface font in text, typically with 
capital letters 
 Size (r rows x c columns) 

 

𝐗 =

520 580
520 550
⋮ ⋮

540 660 (1000 𝑥 2)

 

SAT Verbal 
(Column 1) 

SAT Math 
(Column 2) 
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Vectors 

• A vector is a matrix where one dimension is equal to size 1 
 Column vector: a matrix of size 𝑟 𝑥 1 

𝒙∙1 =

520
520
⋮

540 1000 𝑥 1

 

 
 Row vector: a matrix of size 1 𝑥 𝑐 

𝒙1∙ = 520 580 1 𝑥 2 
 

• Vectors are typically written in boldface font text, usually with 
lowercase letters 

 

• The dots in the subscripts 𝒙∙1 and 𝒙1∙ represent the dimension 
aggregated across in the vector 
 𝒙1∙ is the first row and all columns of 𝐗 
 𝒙∙1 is the first column and all rows of 𝐗 
 Sometimes the rows and columns are separated by a comma (making it 

possible to read double-digits in either dimension) 
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Matrix Elements 

• A matrix (or vector) is composed of a set of elements 
 Each element is denoted by its position in the matrix (row and column) 

 

• For our matrix of data 𝐗 (size 1000 rows and 2 columns), each 
element is denoted by: 

𝑥𝑖𝑖  
 

 The first subscript is the index for the rows: i = 1,…,r (= 1000) 
 The second subscript is the index for the columns: j = 1,…,c (= 2) 

𝐗 =

𝑥11 𝑥12
𝑥21 𝑥22
⋮ ⋮

𝑥1000,1 𝑥1000,2 (1000 𝑥 2)
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Scalars 

• A scalar is just a single number  
 

• The name scalar is important: the number “scales” a vector – it can 
make a vector “longer” or “shorter” 
 

• Scalars are typically written without boldface: 
𝑥11 = 520 

 
• Each element of a matrix is a scalar 
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Matrix Transpose 

• The transpose of a matrix is a reorganization of the matrix by 
switching the indices for the rows and columns 

𝐗 =

520 580
520 550
⋮ ⋮

540 660 (1000 𝑥 2)

 

 
𝐗𝑇 = 520 520 ⋯ 540

580 550 ⋯ 660 2 𝑥 1000
 

 
• An element 𝑥𝑖𝑖  in the original matrix 𝐗 is now 𝑥𝑖𝑖  in the transposed 

matrix 𝐗𝑇 
 

• Transposes are used to align matrices for operations where the 
sizes of matrices matter (such as matrix multiplication) 
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Types of Matrices 

• Square Matrix: A square matrix has the same number of rows  
and columns 
 Correlation/covariance matrices are square matrices 

 

• Diagonal Matrix: A diagonal matrix is a square matrix with non-zero 
diagonal elements (𝑥𝑖𝑖 ≠ 0 for 𝑖 = 𝑗) and zeros on the off-diagonal 
elements (𝑥𝑖𝑖 = 0 for 𝑖 ≠ 𝑗): 

𝐀 =
2.759 0 0

0 1.643 0
0 0 0.879

 

 We will use diagonal matrices to form correlation matrices 

 
• Symmetric Matrix: A symmetric matrix is a square matrix where all 

elements are reflected across the diagonal (𝑎𝑖𝑖 = 𝑎𝑖𝑖) 
 Correlation and covariance matrices are symmetric matrices 
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VECTORS 
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Vectors in Space… 

• Vectors (row or column) can be represented as lines on a Cartesian 
coordinate system (a graph) 

• Consider the vectors: 𝐚 = 1
2  and 𝐛 = 2

3  

• A graph of these vectors would be: 
 
 
 
 
 
 

• Question: how would a column vector for each of our example 
variables (SATM and SATV) be plotted? 
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Vector Length 

• The length of a vector emanating from the origin is given by the 
Pythagorean formula  
 This is also called the Euclidean distance between the endpoint of the 

vector and the origin 

𝐿𝐱 = 𝑥112 + 𝑥212 + ⋯+ 𝑥𝑟12 = 𝐱  
 

• From the last slide: 𝐚 = 5 = 2.24; 𝐛 = 13 = 3.61 
 

• From our data:  
𝐒𝐀𝐒𝐒 = 15,868.138; 𝐒𝐀𝐒𝐌 = 15,964.42 

 
• In data: length is an analog to the standard deviation 

 In mean-centered variables, the length is the square root of the sum of 
mean deviations (not quite the SD, but close) 
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Vector Addition 

• Vectors can be added together so that a new vector is formed 
 

• Vector addition is done element-wise, by adding each of the 
respective elements together: 
 The new vector has the same number of rows and columns 

 

𝐜 = 𝐚 + 𝐛 = 1
2 + 2

3 = 3
5  

 
 Geometrically, this creates a new vector along either of the previous two  

 Starting at the origin and ending at a new point in space 
 

• In Data: a new variable (say, SAT total) is the result of  
vector addition 

𝑺𝑺𝑻𝑻𝑻𝑻𝑺𝑻 = 𝒙.1 + 𝒙.2 
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Vector Addition: Geometrically 
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Vector Multiplication by Scalar 

• Vectors can be multiplied by scalars 
 All elements are multiplied by the scalar 

𝐝 = 2𝐚 = 2 1
2 = 2

4  

 
• Scalar multiplication changes the length of the vector: 

𝐝 = 22 + 42 = 20 = 4.47 
 

• This is where the term scalar comes from: a scalar ends up 
“rescaling” (resizing) a vector 
 

• In Data: the GLM (where X is a matrix of data) the fixed effects 
(slopes) are scalars multiplying the data 
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Scalar Multiplication: Geometrically 
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Linear Combinations 

• Addition of a set of vectors (all multiplied by scalars) is called a 
linear combination: 

𝐲 = 𝑎1𝐱1 + 𝑎2𝐱2 + ⋯+ 𝑎𝑘𝐱𝑘 
 

• Here, 𝐲 is the linear combination 
 For all k vectors, the set of all possible linear combinations is called  

their span 
 Typically not thought of in most analyses – but when working with things 

that don’t exist (latent variables) becomes somewhat important 

 
• In Data: linear combinations happen frequently: 

 Linear models (i.e., Regression and ANOVA) 
 Principal components analysis (later today) 
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Linear Dependencies 

• A set of vectors are said to be linearly dependent if 
𝑎1𝐱1 + 𝑎2𝐱2 + ⋯+ 𝑎𝑘𝐱𝑘 = 0 

-and- 
𝑎1,𝑎2, … ,𝑎𝑘 are all not zero 

 
• Example: let’s make a new variable – SAT Total: 

𝐒𝐀𝐒𝐭𝐭𝐭𝐚𝐭 = 1 ∗ 𝐒𝐀𝐒𝐒 + 1 ∗ 𝐒𝐀𝐒𝐌 
 
• The new variable is linearly dependent with the others: 

1 ∗ 𝐒𝐀𝐒𝐒 + 1 ∗ 𝐒𝐀𝐒𝐌− 1 ∗ 𝐒𝐀𝐒𝐭𝐭𝐭𝐚𝐭 = 𝟎 
 
• In Data: (multi) collinearity is a linear dependency. Linear 

dependencies are bad for statistical analyses that use matrix 
inverses (discussed soon).  
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Normalizing Vectors 

• Normalizing vectors is the process of rescaling a vector 
(multiplication by scalar) so that the length of the vector is  
equal to one: 

𝐱𝑛𝑛𝑟𝑛 =
𝐱
𝐱

 

• From our example vector: 

𝐚𝑛𝑛𝑟𝑛 =
𝐚
𝐚

=
1
5

1
2 =

1
5

2
5

 

• As such, the length of the vector is: 

𝐚 =
1
5

2

+
2
5

2

= 1 
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Normalizing in Statistics 

• We will encounter normalized vectors later today – in principal 
components analysis 

 

• Generally speaking, entities that have no real space (such as 
principal components and “latent” factors) have corresponding 
vectors that are normalized 
 Normalization allows for a solution to be found 
 It’s an arbitrary standard (but one that is well agreed upon) 
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Inner (Dot) Product of Vectors 

• An important concept in vector geometry is that of the inner 
product of two vectors 
 The inner product is also called the dot product 

𝐚 ∙ 𝐛 = 𝐚𝑇𝐛 = 𝑎11𝑏11 + 𝑎21𝑏21 + ⋯+ 𝑎𝑁1𝑏𝑁1 = �𝑎𝑖1𝑏𝑖1

𝑁

𝑖=1

 

 

• The dot or inner product is related to the angle between vectors 
and to the projection of one vector onto another 

 

• From our example: 𝐚 ∙ 𝐛 = 1 ∗ 2 + 2 ∗ 3 = 8 
• From our data: 𝒙.1 ⋅ 𝒙.2 = 251,928,400 

 
• In data: the angle between vectors is related to the correlation 

between variables and the projection is related to 
regression/ANOVA/linear models 
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Angle Between Vectors 

• As vectors are conceptualized geometrically, the angle between two 
vectors can be calculated 

𝜃𝑎𝑎 = cos−1
𝐚 ∙ 𝒃
𝐚 𝐛

 

 
• From the example:  

𝜃𝑎𝑎 = cos−1
8

5 13
= 0.12 

 
• From our data: 

𝜃𝑆𝑆𝑇𝑆,𝑆𝑆𝑇𝑆 = cos−1
251,928,400

15,868.138 15,946.42
= 0.105 
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In Data: Cosine Angle = Correlation 

• If you have data that are: 
 Placed into vectors 
 Centered by the mean (subtract the mean from each observation) 

 
• …then the cosine of the angle between those vectors is the 

correlation between the variables: 
 

𝑟𝑎𝑎 = 𝑐𝑐𝑐 𝜃𝑎𝑎 =
𝐚 ∙ 𝒃
𝐚 𝐛

=
∑ 𝑎𝑖1 − 𝑎� 𝑏𝑖1 − 𝑏�𝑁
𝑖=1

∑ 𝑎𝑖1 − 𝑎� 2𝑁
𝑖=1 ∑ 𝑏𝑖1 − 𝑏� 2𝑁

𝑖=1

 

 
For the SAT example data (using mean centered variables): 

𝑟𝑆𝑆𝑇𝑆,𝑆𝑆𝑇𝑆 = cos 𝜃𝑆𝑆𝑇𝑆𝑆,𝑆𝑆𝑇𝑆𝑆 = cos
3,132,223.6

1,573.956 ∗ 2,567.0425
= .775 
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Vector Projections 

• A final vector property that shows up in statistical terms frequently 
is that of a projection 
 

• The projection of a vector 𝐚 onto 𝐛 is the orthogonal projection of 𝐚 
onto the straight line defined by 𝐛 
 The projection is the “shadow” of one vector onto the other: 

𝐚proj 𝐛 =
𝐚 ∙ 𝐛
𝐛 2 𝐛 

 
 
 

• In data: linear models can be 
thought of as projections  
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Vector Projections Example 

• To provide a bit more context for vector projections, let’s consider 
the projection of SATV onto SATM: 

𝑺𝑺𝑻𝑺proj 𝑺𝑺𝑻𝑺 =
𝑺𝑺𝑻𝑺 ∙ 𝑺𝑺𝑻𝑺

𝑺𝑺𝑻𝑺 2 𝑺𝑺𝑻𝑺 

• The first portion turns out to be: 
𝑺𝑺𝑻𝑺 ∙ 𝑺𝑺𝑻𝑺

𝑺𝑺𝑻𝑺 2 =
251,928,400
15,964.42 2 = .475 

 
• This is also the regression slope 𝛽1: 

𝑆𝑆𝑇𝑉𝑝 = 𝛽0 + 𝛽1𝑆𝑆𝑇𝑀𝑝 + 𝑒𝑝 
 
 
 

PSYC 943: Lecture 10 34 



MATRIX ALGEBRA 
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Moving from Vectors to Matrices 

• A matrix can be thought of as a collection of vectors 
 Matrix operations are vector operations on steroids 

 

• Matrix algebra defines a set of operations and entities on matrices 
 I will present a version meant to mirror your previous algebra experiences 

 

• Definitions: 
 Identity matrix 
 Zero vector 
 Ones vector 

 

• Basic Operations: 
 Addition 
 Subtraction 
 Multiplication 
 “Division” 
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Matrix Addition and Subtraction 

• Matrix addition and subtraction are much like vector 
addition/subtraction 
 

• Rules: 
 Matrices must be the same size (rows and columns) 

 
• Method: 

 The new matrix is constructed of element-by-element addition/subtraction 
of the previous matrices 

 
• Order: 

 The order of the matrices (pre- and post-) does not matter 
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Matrix Addition/Subtraction  
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Matrix Multiplication 

• Matrix multiplication is a bit more complicated 
 The new matrix may be a different size from either of the two  

multiplying matrices 
𝐀(𝑟 𝑥 𝑆)𝐁(𝑆 𝑥 𝑘) = 𝐂(𝑟 𝑥 𝑘) 

• Rules: 
 Pre-multiplying matrix must have number of columns equal to the number 

of rows of the post-multiplying matrix 

 
• Method: 

 The elements of the new matrix consist of the inner (dot) product of the 
row vectors of the pre-multiplying matrix and the column vectors of the 
post-multiplying matrix  

 
• Order: 

 The order of the matrices (pre- and post-) matters 
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Matrix Multiplication 

PSYC 943: Lecture 10 40 



Multiplication in Statistics 

• Many statistical formulae with summation can be re-expressed  
with matrices 
 

• A common matrix multiplication form is: 𝐗𝑇𝐗 
 Diagonal elements: ∑ 𝑋𝑖2𝑁

𝑖=1  
 Off-diagonal elements: ∑ 𝑋𝑖𝑎𝑋𝑖𝑎 

𝑁
𝑖=1  

 
• For our SAT example:  

𝐗𝑇𝐗 =

�𝑆𝑆𝑇𝑉𝑖2
𝑁

𝑖=1

�𝑆𝑆𝑇𝑉𝑖𝑆𝑆𝑇𝑀𝑖

𝑁

𝑖=1

�𝑆𝑆𝑇𝑉𝑖𝑆𝑆𝑇𝑀𝑖

𝑁

𝑖=1

�𝑆𝑆𝑇𝑀𝑖
2

𝑁

𝑖=1

= 251,797,800 251,928,400
251,928,400 254,862,700  
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Identity Matrix 

• The identity matrix is a matrix that, when pre- or post- multiplied by 
another matrix results in the original matrix: 

𝐀𝐀 = 𝐀 
𝐀𝐀 = 𝐀 

 
• The identity matrix is a square matrix that has: 

 Diagonal elements = 1 
 Off-diagonal elements = 0 

𝐼 3 𝑥 3 =
1 0 0
0 1 0
0 0 1
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Zero Vector 

• The zero vector is a column vector of zeros 

𝟎(3 𝑥 1) =
0
0
0

 

 

• When pre- or post- multiplied the result is the zero vector: 
𝐀𝟎 = 𝟎 
𝟎𝐀 = 𝟎 
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Ones Vector 

• A ones vector is a column vector of 1s: 

𝟏(3 𝑥 1) =
1
1
1

 

 
• The ones vector is useful for calculating statistical terms, such as the 

mean vector and the covariance matrix 
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Matrix “Division”: The Inverse Matrix 

• Division from algebra: 
 First:  𝑎

𝑎
= 1

𝑎
𝑎 = 𝑏−1𝑎 

 Second: 𝑎
𝑎

= 1 
 

• “Division” in matrices serves a similar role 
 For square and symmetric matrices, an inverse matrix is a matrix that when 

pre- or post- multiplied with another matrix produces the identity matrix: 
𝐀−1𝐀 = 𝐀 
𝐀𝐀−𝟏 = 𝐀 

 

• Calculation of the matrix inverse is complicated 
 Even computers have a tough time 

 

• Not all matrices can be inverted 
 Non-invertible matrices are called singular matrices 

 In statistics, singular matrices are commonly caused by linear dependencies 
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The Inverse 

• In data: the inverse shows up constantly in statistics 
 Models which assume some type of (multivariate) normality need an 

inverse covariance matrix 
 

• Using our SAT example 
 Our data matrix was size (1000 x 2), which is not invertible 
 However 𝐗𝑇𝐗 was size (2 x 2) – square, and symmetric 

𝐗𝑇𝐗 = 251,797,800 251,928,400
251,928,400 254,862,700  

 The inverse is: 

𝐗𝑇𝐗 −1 = 3.61𝐸 − 7 −3.57𝐸 − 7
−3.57𝐸 − 7 3.56𝐸 − 7  
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Matrix Algebra Operations  

• 𝐀 + 𝐁 + 𝐂 = 
𝐀 + (𝐁 + 𝐂) 

• 𝐀 + 𝐁 = 𝐁 + 𝐀 
• 𝑐 𝐀 + 𝐁 = 𝑐𝐀 + 𝑐𝐁 
• 𝑐 + 𝑑 𝐀 = 𝑐𝐀 + 𝑑𝐀 
• 𝐀 + 𝐁 𝑇 = 𝐀𝑇 + 𝐁𝑇 
• 𝑐𝑑 𝐀 = 𝑐(𝑑𝐀) 
• 𝑐𝐀 𝑇 = 𝑐𝐀𝑇 
• 𝑐 𝐀𝐁 = 𝑐𝐀 𝐁 
• 𝐀 𝐁𝐂 = 𝐀𝐁 𝐂 

 

• 𝐀 𝐁 + 𝐂 = 𝐀𝐁 + 𝐀𝐂 
• 𝐀𝐁 𝑇 = 𝐁𝑇𝐀𝑇 
• For 𝑥𝑖  such that 𝑆𝑥𝑖  exists: 

�𝐀𝐱𝑖 =
𝑁

𝑖=1

𝐀�𝐱𝑖

𝑁

𝑖=1

 

� 𝐀𝐱𝑖 𝐀𝐱𝑖
𝑇 =

𝑁

𝑖=1

 

𝐀 �𝐱𝑖𝐱𝑖𝑇
𝑁

𝑖=1

𝐀𝑇 
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ADVANCED MATRIX OPERATIONS 
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Advanced Matrix Functions/Operations 

• We end our matrix discussion with some advanced topics 
 All related to multivariate statistical analysis 

 
• To help us throughout, let’s consider the correlation matrix of our 

SAT data: 

𝐑 =  1.00 0.78
0.78 1.00  
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Matrix Trace 

• For a square matrix 𝐀 with p rows/columns, the trace is the sum of 
the diagonal elements: 

𝑡𝑟𝐀 = �𝑎𝑖𝑖

𝑝

𝑖=1

 

• For our data, the trace of the correlation matrix is 2 
 For all correlation matrices, the trace is equal to the number of variables 

because all diagonal elements are 1 

 
• The trace is considered the total variance in multivariate statistics 

 Used as a target to recover when applying statistical models 
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Matrix Determinants 
• A square matrix can be characterized by a scalar value called a 

determinant: 
det𝐀 = 𝐀  

 
• Calculation of the determinant is tedious 

 Our determinant was 0.3916 
 

• The determinant is useful in statistics: 
 Shows up in multivariate statistical distributions 
 Is a measure of “generalized” variance of multiple variables 

 
• If the determinant is positive, the matrix is called positive definite 

 Is invertible 
 

• If the determinant is not positive, the matrix is called  
non-positive definite 

 Not invertible  
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Matrix Orthogonality 

• A square matrix 𝐀 is said to be orthogonal if: 
𝐀𝐀𝑇 = 𝐀𝑇𝐀 = 𝐀 

 
• Orthogonal matrices are characterized by two properties: 

1. The dot product of all row vector multiples is the zero vector 
 Meaning vectors are orthogonal (or uncorrelated) 

2. For each row vector, the sum of all elements is one 
 Meaning vectors are “normalized” 

 
• The matrix above is also called orthonormal 

 
• Orthonormal matrices are used in principal components  
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Eigenvalues and Eigenvectors 

• A square matrix 𝐀 can be decomposed into a set of eigenvalues 𝛌 
and a set of eigenvectors 𝐞 

𝐀𝐞 = λ𝐞 
 

• Each eigenvalue has a corresponding eigenvector 
 The number equal to the number of rows/columns of 𝐀 
 The eigenvectors are all orthogonal 

 
• In many classical multivariate statistics, eigenvalues and 

eigenvectors are used very frequently 
 We will see their use in principal components shortly 
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Eigenvalues and Eigenvectors Example 

• In our SAT example, the two eigenvalues obtained were: 
𝜆1 = 1.78 
𝜆2 = 0.22 

 
• The two eigenvectors obtained were: 

𝐞1 = 0.71
0.71 ; 𝐞2 = 0.71

−0.71  

 
• These terms will have much greater meaning in one moment 

(principal components analysis) 
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Spectral Decomposition 

• Using the eigenvalues and eigenvectors, we can reconstruct the 
original matrix using a spectral decomposition: 

𝐀 = �𝜆𝑣𝐞𝑣𝐞𝑣𝑇
𝑆

𝑣=1

 

 Here 𝑣 is the index for variable (with a total of 𝑉 variables) 

• For our example, we can get back to our original matrix: 

𝐑1 = 𝜆1𝐞1𝐞1𝑇 = 1.78 .71
.71 .71 .71 = .89 .89

.89 .89  

 

𝐑2 = 𝐑1 + 𝜆2𝐞2𝐞2𝑇 = .89 .89
.89 .89 + 0.22 .71

−.71 .71 −.71

= 1.00 0.78
0.78 1.00  
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Additional Eigenvalue Properties 

• The matrix trace can be found by the sum of the eigenvalues: 

𝑡𝑟𝐀 = �𝜆𝒗

𝑆

𝑣=1

 

 In our example, the 𝑡𝑟𝐑 =  1.78 + .22 =  2 

 
• The matrix determinant can be found by the product of  

the eigenvalues 

𝐀 = �𝜆𝑣

𝑆

𝑣=1

 

 In our example 𝐑 = 1.78 ∗ .22 = .3916 
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AN INTRODUCTION TO PRINCIPAL 
COMPONENTS ANALYSIS 
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PCA Overview 

• Principal Components Analysis (PCA) is a method for re-expressing 
the covariance (correlation) between a set of variables 
 The re-expression comes from creating a set of new variables (linear 

combinations) of the original variables 

 
• PCA has two objectives: 

1. Data reduction 
 Moving from many original variables down to a few “components” 

 
2. Interpretation 

 Determining which original variables contribute most to the 
new “components” 

 
• My objective: use PCA to demonstrate eigenvalues and eigenvectors 
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Goals of PCA 

• The goal of PCA is to find a set of k principal components (composite 
variables) that: 
 Is much smaller in number than the original set of 𝑉 variables 
 Accounts for nearly all of the total variance 

 Total variance = trace of covariance/correlation matrix 

 
• If these two goals can be accomplished, then the set of k principal 

components contains almost as much information as the  
original 𝑉 variables 
 Meaning – the components can now replace the original variables in any 

subsequent analyses 
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PCA Features 

• PCA often reveals relationships between variables that were not 
previously suspected 
 New interpretations of data and variables often stem from PCA 

 

• PCA usually serves as more of a means to an end rather than an end 
it itself 
 Components (the new variables) are often used in other  

statistical techniques 
 Multiple regression 
 Cluster analysis 

 
• PCA is often intermixed with Exploratory Factor Analysis 

 Don’t. Please don’t. Please help make it stop. 
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PCA Details 

• Notation: let 𝑌 denote our new principal components and let 𝐗 be 
our original data matrix (with N people and 𝑉 variables) 
 We will let 𝑝 be our index for a person  

 
• The new components are linear combinations: 

𝑌𝑝1 = 𝐞1𝑇𝐗 = 𝑒11𝑋𝑝1 + 𝑒21𝑋𝑝2 + ⋯+ 𝑒𝑆1𝑋𝑝𝑆 
𝑌𝑝2 = 𝐞2𝑇𝐗 = 𝑒12𝑋𝑝1 + 𝑒22𝑋𝑝2 + ⋯+ 𝑒𝑆2𝑋𝑝𝑆 

⋮ 
𝑌𝑝𝑆 = 𝐞𝑆𝑇𝐗 = 𝑒1𝑆𝑋𝑝1 + 𝑒2𝑆𝑋𝑝2 + ⋯+ 𝑒𝑆𝑆𝑋𝑝𝑆 

 
• The weights of the components (𝑒𝑣𝑘) come from the eigenvectors 

of the covariance or correlation matrix 
 Each variable 𝑣 has a weight for each component 𝑘 
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Details About the Components 

• The components (𝑌) are formed by the weights of the eigenvectors 
of the covariance or correlation matrix of the original data 
 The variance of a component is given by the eigenvalue associated with the 

eigenvector for the component 

 
• Using the eigenvalue and eigenvectors means: 

 Each successive component has lower variance 
 Var(Y1) > Var(Y2) > … > Var(Yp) 

 All components are uncorrelated 
 The sum of the variances of the principal components is equal to the total 

variance: 

�𝑉𝑎𝑟 𝑌𝑣 = 𝑡𝑟𝐑 = �𝜆𝑣

𝑆

𝑣=1

𝑆

𝑣=1
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PCA on our Example 

• We will now conduct a PCA on the correlation matrix of our  
sample data 
 This example is given for demonstration purposes – typically we will not do 

PCA on small numbers of variables 
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PCA in SAS 

• The SAS procedure that does principal components is called  
proc princomp: 
 
 

• The results (look familiar?): 
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Graphical Representation 

• Plotting the components and the original data side by side reveals 
the nature of PCA: 
 Shown from PCA of covariance matrix 
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PCA Summary 

• This introduction to PCA was meant to help describe the nature of 
eigenvalues and eigenvectors 
 Many classical multivariate statistics use these terms 

 
• We will return to PCA in the last week of class – when we discuss 

inferences about covariances in multivariate data using exploratory 
and confirmatory factor models 
 

• Eigenvalues and eigenvectors will reappear in the next 2-3 weeks 
 The basis for classical Multivariate ANOVA 
 Modern versions have moved away from these terms 

 But they still are useful 
 They do show up from time to time in other places as well 
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WRAPPING UP 
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Wrapping Up 

• Matrix algebra is the language of multivariate statistics 
 Learning the basics will help you read work (both new old) 

 

• Over the course of the rest of the semester, we will use matrix 
algebra frequently 
 It provides for more concise formulae 

 

• In practice, we will use matrix algebra very little 
 But understanding how it works is the key to understanding how statistical 

methods work and are related 
 

• Up next: multivariate statistical distributions 
 The basis for modern estimation methods of multivariate statistical models 

using maximum likelihood or Bayesian estimation 
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