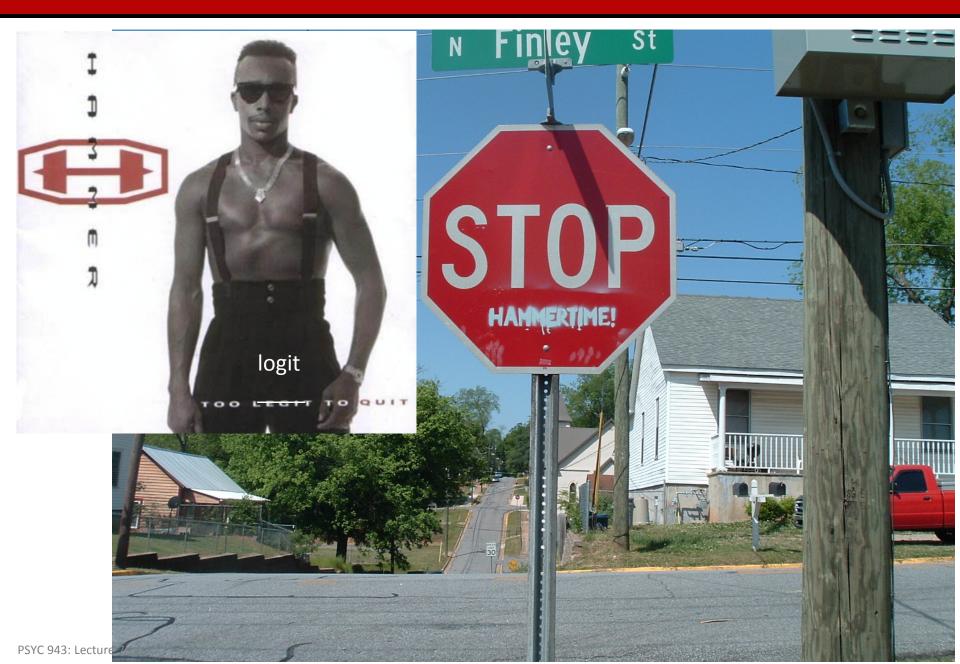
Introduction to Generalized Univariate Models, Models for Binary Outcomes, and SAS PROC GENMOD

> PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 7: September 14, 2012

Today's Class



Today's Class

- A bit of review for maximum likelihood
- Expanding your linear models knowledge to models for outcomes that are **not** conditionally normally distributed
 - > A class of models called Generalized Linear Models
- A furthering of our Maximum Likelihood discussion: how knowledge of distributions and likelihood functions makes virtually any type of model possible (in theory)
- An example of generalized models for binary data: logistic regression

REVIEWING MAXIMUM LIKELIHOOD

Properties of Maximum Likelihood Estimators

- Provided several assumptions ("regularity conditions") are met, maximum likelihood estimators have good statistical properties:
- 1. <u>Asymptotic Consistency:</u> as the sample size increases, the estimator converges in probability to its true value
- <u>Asymptotic Normality:</u> as the sample size increases, the distribution of the estimator is normal (with variance given by "information" matrix)
- 3. <u>Efficiency:</u> No other estimator will have a smaller standard error
- Because they have such nice and well understood properties, MLEs are commonly used in statistical estimation

Things Involved in Maximum Likelihood Estimation

• (Marginal) Likelihood/Probability Density Functions:

- The assumed distribution of one observation's data following some type of probability density function that maps the *sample space* onto a likelihood
- > The <u>outcome</u> can come from any distribution

• (Joint) Likelihood Function:

- The combination of the marginal likelihood functions (by a product when independence of observations is assumed)
- > Serves as the basis for finding the unknown parameters that find the maximum point

Log-Likelihood Function:

- > The natural log of the joint likelihood function, used to make the function easier to work with statistically and computationally
- > Typically the function used to find the unknown parameters of the model

• Function Optimization (finding the maximum):

- > Initial values of the unknown parameters are selected and the log likelihood is calculated
- New values are then found (typically using an efficient search mechanism like Newton Raphson) and the log likelihood is calculated again
- If the change in log likelihoods is small, the algorithm stops (found the maximum); if not, the algorithm continues for another iteration of new parameter guesses

Once the Maximum Is Found...

• Distribution of the Parameters:

 As sample size gets large, the <u>parameters</u> of the model follow a normal distribution (note, this is NOT the outcome)

• Standard Errors of Parameters:

- The standard errors of parameters are found by calculating the <u>information</u> <u>matrix</u>, which results from the matrix of second derivatives evaluated at the maximum value of the log likelihood function
- The asymptotic covariance matrix of the parameters comes from -1 times the inverse of the information matrix (contains variances of parameters along the diagonal)
- > The standard error for each parameter is the square root of the variances
- The variances and covariances of the parameters are used in calculating linear combinations of the parameters, as in SAS' ESTIMATE statement

Once the Maximum is Found...

• Likelihood Ratio/Deviance Tests:

- -2 times the log likelihood (at the maximum) provides what is often called a deviance statistic
- Nested models are compared using differences in -2*log likelihood, which follows a Chi-Square distribution with DF = difference in number of parameters between models
- Some software reports -2 log likelihood (like PROC MIXED), some reports only the log likelihood (like PROC GENMOD so you have to multiply by -2)

• Wald Tests:

- (1 degree of freedom) Wald tests are typically formed by taking a parameter and dividing it by its standard error
- > Typically these are used to evaluate fixed effects for ML estimates of GLMs

Information Criteria

- > The information criteria are used to select from non-nested models
- The model with the lowest value on a given criterion (i.e., AIC, BIC) is the preferred model
- > This is not a hypothesis test: no p-values are given
- > These aren't used when models are nested (use likelihood ratio/deviance tests)

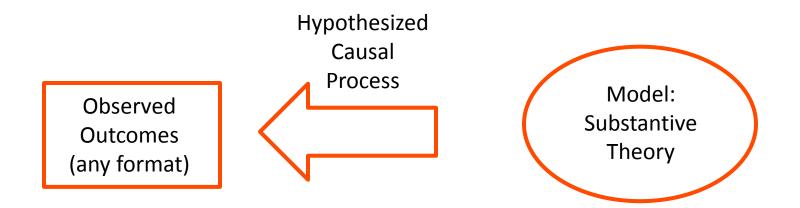
AN INTRODUCTION TO GENERALIZED MODELS

A World View of Models

- Statistical models can be broadly organized as:
 - General (normal outcome) vs. Generalized (not normal outcome)
 - One dimension of sampling (one variance term per outcome) vs. multiple dimensions of sampling (multiple variance terms)
 - Fixed effects only vs. mixed (fixed and random effects = multilevel)
- All models have **fixed effects**, and then:
 - General Linear Models: conditionally normal distribution for data, fixed effects, no random effects
 - General Linear Mixed Models: conditionally normal distribution for data, fixed and random effects
 - Generalized Linear Models: any conditional distribution for data, fixed effects through link functions, no random effects
 - Generalized Linear Mixed Models: any conditional distribution for data, fixed and random effects through link functions
- "Linear" means the fixed effects predict the *link-transformed* DV in a linear combination of (effect*predictor) + (effect*predictor)...

PSYC 943: Lecture 7

Unpacking the Big Picture



- Substantive theory: what guides your study
- Hypothetical causal process: what the statistical model is testing (attempting to falsify) when estimated
- Observed outcomes: what you collect and evaluate based on your theory
 - > Outcomes can take many forms:
 - Continuous variables (e.g., time, blood pressure, height)
 - Categorical variables (e.g., likert-type responses, ordered categories, nominal categories)
 - Combinations of continuous and categorical (e.g., either 0 or some other continuous number)

The Goal of Generalized Models

- Generalized models map the substantive theory onto the sample space of the observed outcomes
 - Sample space = type/range/outcomes that are possible
- The general idea is that the statistical model will not approximate the outcome well if the assumed distribution is not a good fit to the sample space of the outcome
 - > If model does not fit the outcome, the findings cannot be believed
- The key to making all of this work is the use of differing statistical distributions for the outcome
- Generalized models allow for different distributions for outcomes
 - The mean of the distribution is still modeled by the model for the means (the fixed effects)
 - The variance of the distribution may or may not be modeled (some distributions don't have variance terms)

What kind of outcome? Generalized vs. General

- Generalized Linear Models → General Linear Models whose residuals follow some not-normal distribution and in which a linktransformed Y is predicted instead of Y
- Many kinds of non-normally distributed outcomes have some kind of generalized linear model to go with them:
 - Binary (dichotomous)
 - Unordered categorical (nominal)
 - Ordered categorical (ordinal)
 - Counts (discrete, positive values)
 - Censored (piled up and cut off at one end left or right)
 - > Zero-inflated (pile of 0's, then some distribution after)
 - > Continuous but skewed data (pile on one end, long tail)

These two are often called "multinomial" inconsistently

Some Links/Distributions (from Wikipedia)

Distribution	Support of distribution	Typical uses	Link name	Link function	Mean function	
Normal	real: $(-\infty,+\infty)$	Linear-response data	Identity	$\mathbf{X}\boldsymbol{\beta} = \mu$	$\mu = \mathbf{X} \boldsymbol{\beta}$	
Exponential Gamma	real: $(0,+\infty)$	Exponential-response data, scale parameters	Inverse	$\mathbf{X}\boldsymbol{eta}=\mu^{-1}$	$\mu = (\mathbf{X}\boldsymbol{\beta})^{-1}$	
Inverse Gaussian			Inverse squared	$\mathbf{X}\boldsymbol{eta}=\mu^{-2}$	$\mu = (\mathbf{X}\boldsymbol{\beta})^{-1/2}$	
Poisson	integer: $[0,+\infty)$	count of occurrences in fixed amount of time/space	Log	$\mathbf{X}\boldsymbol{eta} = \ln\left(\mu\right)$	$\mu = \exp\left(\mathbf{X}\boldsymbol{\beta}\right)$	
Bernoulli	integer: $[0,1]$	outcome of single yes/no occurrence	_			
Binomial	integer: $[0,N]$	count of # of "yes" occurrences out of N yes/no occurrences				
Categorical	integer: $[0, K)$ K-vector of integer: $[0, 1]$, where exactly one element in the vector has the value 1	outcome of single K- way occurrence			$\mathbf{X}\boldsymbol{\beta} = \ln\left(\frac{\mu}{1-\mu}\right)$	$\mu = \frac{\exp\left(\mathbf{X}\boldsymbol{\beta}\right)}{1 + \exp\left(\mathbf{X}\boldsymbol{\beta}\right)} = \frac{1}{1 + \exp\left(-\mathbf{X}\boldsymbol{\beta}\right)}$
Multinomial	K-vector of integer: $[0,N]$	count of occurrences of different types (1 K) out of N total K-way occurrences				

3 Parts of a Generalized Linear Model

- Link Function (main difference from GLM):
 - How a non-normal outcome gets transformed into something we can predict that is more continuous (unbounded)
 - For outcomes that are already normal, general linear models are just a special case with an "identity" link function (Y * 1)

- Model for the Means ("Structural Model"):
 - > How predictors **linearly** relate to the link-transformed outcome
 - > New link-transformed $Y_p = \beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p$
- Model for the Variance ("Sampling/Stochastic Model"):
 - If the errors aren't normally distributed, then what are they?
 - Family of alternative distributions at our disposal that map onto what the distribution of errors could possibly look like

Link Functions: How Generalized Models Work

- Generalized models work by providing a mapping of the theoretical portion of the model (the right hand side of the equation) to the sample space of the outcome (the left hand side of the equation)
 - > The mapping is done by a feature called a link function
- The link function is a non-linear function that takes the linear model predictors, random/latent terms, and constants and puts them onto the space of the outcome observed variables
- Link functions are typically expressed for the mean of the outcome variable (we will only focus on that)
 - > In generalized models, the variance is often a function of the mean

Link Functions in Practice

- The link function expresses the conditional value of the mean of the outcome $E(Y_p) = \hat{Y}_p = \mu_y$ (E stands for expectation)...
- ...through a (typically) non-linear **link function** $g(\cdot)$ (when used on conditional mean); or its inverse $g^{-1}(\cdot)$ when used on predictors...
- ...of the observed predictors (and their regression weights): $\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p$
- Meaning:

$$E(Y_p) = \hat{Y}_p = \mu_y = g^{-1}(\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p)$$

- The term $\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p$ is called the **linear predictor**
 - > Within the function, the values are linear combinations
 - Model for the means (fixed effects)

Normal GLMs in a Generalized Model Context

- Our familiar general linear model is actually a member of the generalized model family (it is **subsumed**)
 - > The link function is called the identity, the linear predictor is what it is
- The normal distribution has two parameters, a mean μ and a variance σ^2
 - Unlike most distributions, the normal distribution parameters are directly modeled by the GLM
- The expected value of an outcome from the GLM was

$$E(Y_p) = \hat{Y}_p = \mu_y = g^{-1} (\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p) = \beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p$$

• In conditionally normal GLMs, the inverse link function is called the identity:

 $g^{-1}(\cdot) = 1 * (\text{linear predictor})$

- The identity does not alter the predicted values they can be any real number
- This matches the sample space of the normal distribution the mean can be any real number

And...About the Variance

- The other parameter of the normal distribution described the variance of an outcome called the error variance
- We found that the model for the variance for the GLM was: $V(Y_p) = V(\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p + e_p) = V(e_p) = \sigma_e^2$
- Similarly, this term directly relates to the variance of the outcome in the normal distribution
 - > We will quickly see distributions where this doesn't happen

GENERALIZED LINEAR MODELS FOR BINARY DATA

Today's Data Example

 To help demonstrate generalized models for binary data, we borrow from an example listed on the UCLA ATS website:

http://www.ats.ucla.edu/stat/sas/dae/ologit.htm

- Data come from a survey of 400 college juniors looking at factors that influence the decision to apply to graduate school:
 - Y (outcome): student rating of likelihood he/she will apply to grad school –
 (0 = unlikely; 1 = somewhat likely; 2 = very likely)
 - We will first look at Y for two categories (0 = unlikely; 1 = somewhat or very likely) this is to introduce the topic for you Y is a binary outcome
 - You wouldn't do this in practice (use a different distribution for 3 categories)
 - > ParentEd: indicator (0/1) if one or more parent has graduate degree
 - > Public: indicator (0/1) if student attends a public university
 - > GPA: grade point average on 4 point scale (4.0 = perfect)

Analysis Variable : GPA					
N	Mean	Std Dev	Minimum	Maximum	
400	2.998925	0.3979409	1.9	4	

Likelihood of Applying (1 = likely)					
Lapply Frequency Percent Cumulative Cu					
			Frequency	Percent	
0	220	55	220	55	
1	180	45	400	100	

APPLY	Frequency	Percent	Cumulative	Cumulative
			Frequency	Percent
0	220	55	220	55
1	140	35	360	90
2	40	10	400	100

Parent Has Graduate Degree					
parentGD Frequency Percent Cumulative Cum					
			Frequency	Percent	
0	337	84.25	337	84.25	
1	63	15.75	400	100	

Student Attends Public University					
PUBLIC Frequency Percent Cumulative Cumul					
			Frequency	Percent	
0	343	85.75	343	85.75	
1	57	14.25	400	100	

What If We Used a Normal GLM for Binary Outcomes?

- If Y_p is a binary (0 or 1) outcome...
 - > Expected mean is proportion of people who have a 1 (or "p", the probability of $Y_p = 1$ in the sample)
 - The **probability of having a 1** is what we're trying to predict for each person, given the values of his/her predictors
 - General linear model: $Y_p = \beta_0 + \beta_1 x_p + \beta_2 z_p + e_p$
 - $-\beta_0$ = expected probability when all predictors are 0
 - $-\beta$'s = expected change in probability for a one-unit change in the predictor
 - e_p = difference between observed and predicted values
 - > Model becomes $Y_p = (predicted probability of 1) + e_p$

A General Linear Model Predicting Binary Outcomes?

• But if Y_p is binary, then e_p can only be 2 things:

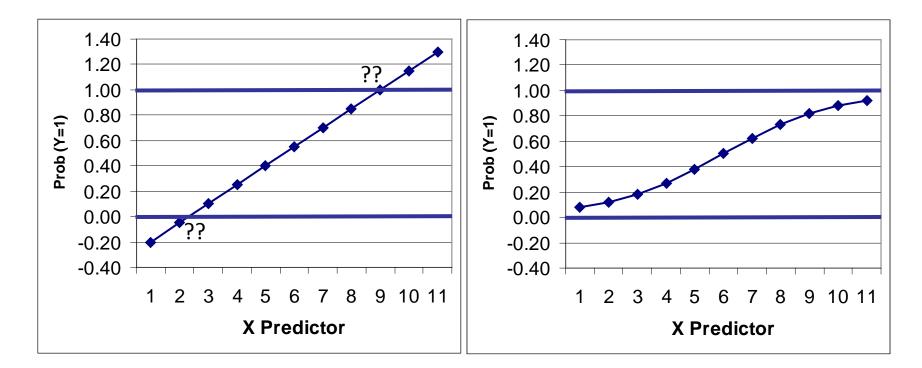
>
$$e_p = Y_p - \hat{Y}_p$$

+ If $Y_p = 0$ then $e_p = (0 - \text{predicted probability})$

- If $Y_p = 1$ then $e_p = (1 \text{predicted probability})$
- > The mean of errors would still be 0...by definition
- But variance of errors can't possibly be constant over levels of X like we assume in general linear models
 - The mean and variance of a binary outcome are **dependent**!
 - As shown shortly, mean = p and variance = p*(1-p), so they are tied together
 - This means that because the conditional mean of Y (p, the predicted probability Y= 1) is dependent on X, then so is the error variance

A General Linear Model With Binary Outcomes?

- How can we have a linear relationship between X & Y?
- Probability of a 1 is bounded between 0 and 1, but predicted probabilities from a linear model aren't bounded
 - > Impossible values
- Linear relationship needs to 'shut off' somehow \rightarrow made nonlinear



3 Problems with General* Linear Models Predicting Binary Outcomes

- *General = model for continuous, conditionally normal outcome
- Restricted range (e.g., 0 to 1 for binary item)
 - Predictors should not be linearly related to observed outcome

 → Effects of predictors need to be 'shut off' at some point to keep predicted values of binary outcome within range
- Variance is dependent on the mean, and not estimated
 - Fixed (→predicted value) and random (error) parts are related
 → So residuals can't have constant variance
- Further, residuals have a limited number of possible values
 - Predicted values can each only be off in two ways
 - \rightarrow So residuals can't be normally distributed

The Binary Case: Bernoulli Distribution

For items that are binary (dichotomous/two options), a frequent distribution chosen is the Bernoulli distribution (the Bernoulli distribution is also called a one-trial binomial distribution):

<u>Notation</u>: $Y_p \sim B(p_p)$ (where p is the conditional probability of a 1 for person p)

Sample Space: $Y_p \in \{0,1\}$ (Y_p can either be a 0 or a 1)

Probability Density Function (PDF):

$$f(Y_p) = (p_p)^{Y_p} (1 - p_p)^{1 - Y_p}$$

Expected value (mean) of Y: $E(Y_p) = \mu_{Y_p} = p_p$

Variance of Y:
$$V(Y_p) = \sigma_{Y_p}^2 = p_p(1-p_p)$$

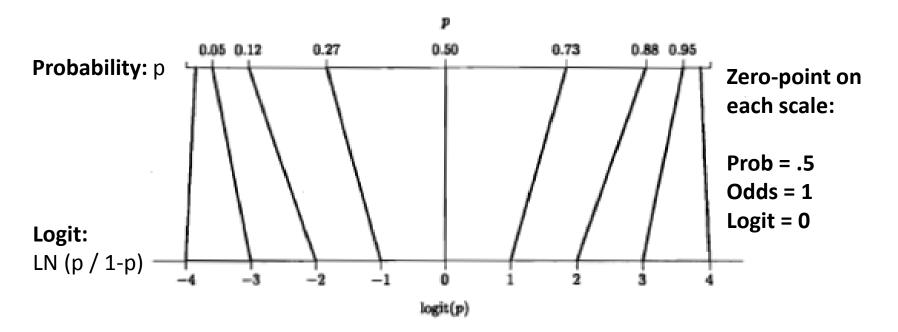
Note: p_p is the only parameter – so we only need to provide a link function for it...

Generalized Models for Binary Outcomes

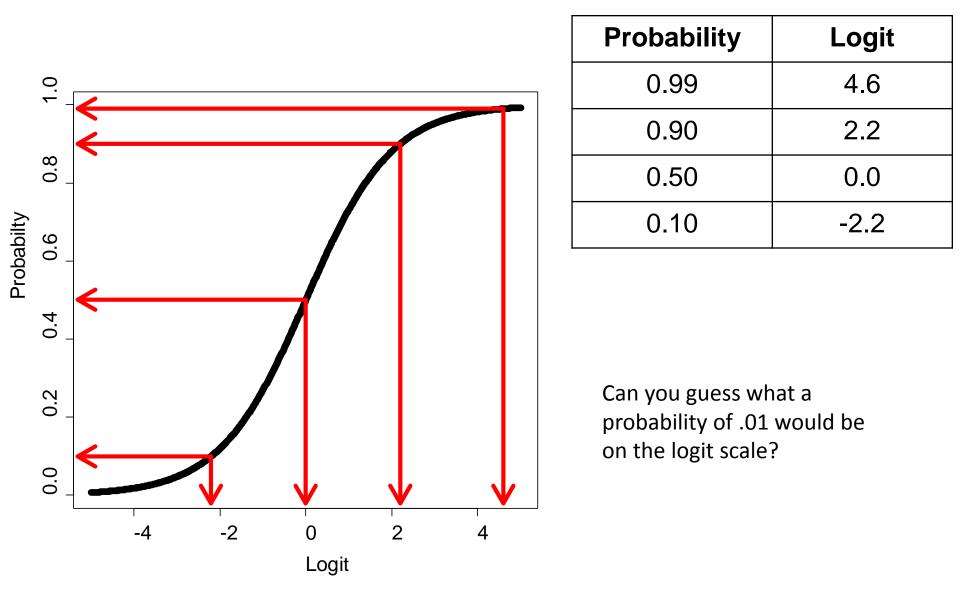
- Rather than modeling the probability of a 1 directly, we need to transform it into a more continuous variable with a link function, for example:
 - > We could transform **probability** into an **odds ratio**:
 - Odds ratio: $(p / 1-p) \rightarrow prob(1) / prob(0)$
 - If p = .7, then Odds(1) = 2.33; Odds(0) = .429
 - Odds scale is way skewed, asymmetric, and ranges from 0 to +∞
 - Nope, that's not helpful
 - > Take *natural log of odds ratio* \rightarrow called "logit" link
 - LN (p / 1-p) \rightarrow Natural log of (prob(1) / prob(0))
 - If p = .7, then LN(Odds(1)) = .846; LN(Odds(0)) = -.846
 - Logit scale is now symmetric about 0 \rightarrow DING
 - > The logit link is one of many used for the Bernoulli distribution
 - Names of others: Probit, Log-Log, Complementary Log-Log

Turning Probability into Logits

- Logit is a nonlinear transformation of probability:
 - > Equal intervals in logits are NOT equal in probability
 - > The logit goes from $\pm \infty$ and is symmetric about prob = .5 (logit = 0)
 - > This solves the problem of using a linear model
 - The model will be **linear with respect to the logit**, which translates into nonlinear with respect to probability (i.e., it **shuts off as needed**)



Transforming Probabilities to Logits



Transforming Logits to Probabilities: $g(\cdot)$ and $g^{-1}(\cdot)$

 In the terminology of generalized models, the link function for a logit is defined by (log = natural logarithm):

$$g\left(E(Y_p)\right) = \log\left(\frac{P(Y_p = 1)}{\left(1 - P(Y_p = 1)\right)}\right) = \beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p$$

Linear Predictor

• A logit can be translated to a probability with some algebra:

$$\exp\left[\log\left(\frac{P(Y_{p}=1)}{\left(1-P(Y_{p}=1)\right)}\right)\right] = \exp\left[\beta_{0} + \beta_{1}X_{p} + \beta_{2}Z_{p} + \beta_{3}X_{p}Z_{p}\right]$$

$$\leftrightarrow \left(1-P(Y_{p}=1)\right)\left[\frac{P(Y_{p}=1)}{\left(1-P(Y_{p}=1)\right)}\right] = \left(\exp\left[\beta_{0} + \beta_{1}X_{p} + \beta_{2}Z_{p} + \beta_{3}X_{p}Z_{p}\right]\right)\left(1-P(Y_{p}=1)\right)$$

Transforming Logits to Probabilities: $g(\cdot)$ and $g^{-1}(\cdot)$

Continuing:

$$P(Y_p = 1) = \left(\exp[\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p]\right) - \left(\left(\exp[\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p]\right)P(Y_p = 1)\right)$$
$$P(Y_p = 1)\left(1 - \exp[\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p]\right) = \exp[\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p]$$

• Which finally gives us:

$$P(Y_p = 1) = \frac{\exp(\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p)}{1 + \exp(\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p)}$$

• Therefore, the inverse logit (un-logit...or $g^{-1}(\cdot)$) is: $E(Y_p) = g^{-1}(\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p) \leftarrow \frac{\exp(\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p)}{1 + \exp(\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p)}$ Linear Predictor

Written Another Way...

• The inverse logit $g^{-1}(\cdot)$ has another form that is sometimes used:

 $E(Y_p) = g^{-1}(\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p)$

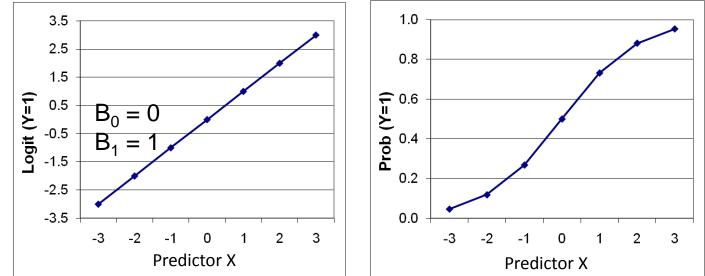
$$=\frac{\exp(\beta_0+\beta_1X_p+\beta_2Z_p+\beta_3X_pZ_p)}{1+\exp(\beta_0+\beta_1X_p+\beta_2Z_p+\beta_3X_pZ_p)}$$

$$=\frac{1}{1+\exp\left(-\left(\beta_{0}+\beta_{1}X_{p}+\beta_{2}Z_{p}+\beta_{3}X_{p}Z_{p}\right)\right)}$$

$$= \left(1 + \exp\left(-\left(\beta_0 + \beta_1 X_p + \beta_2 Z_p + \beta_3 X_p Z_p\right)\right)\right)^{-1}$$

Nonlinearity in Prediction

- The relationship between X and the probability of response=1 is "nonlinear" → an s-shaped logistic curve whose shape and location are dictated by the estimated fixed effects
 - > Linear with respect to the logit, nonlinear with respect to probability



 The logit version of the model will be easier to explain; the probability version of the prediction will be easier to show

Putting it Together with Data: The Empty Model

• The empty model (under GLM):

 $Y_p = \beta_0 + e_p \checkmark$ where $e_p \sim N(0, \sigma_e^2) E(Y_p) = \beta_0$ and $V(Y_p) = \sigma_e^2$

• The empty model for a Bernoulli distribution with a logit link:

$$g\left(E(Y_p)\right) = logit\left(P(Y_p = 1)\right) = logit(p_p) = \beta_0$$

$$p_p = P(Y_p = 1) = E(Y_p) = g^{-1}(\beta_0) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)}$$

$$V(Y_p) = p_p(1 - p_p)$$

- Note: many generalized LMs don't list an error term in the linear predictor

 is for the expected value and error usually has a 0 mean so it disappears
- We could have listed e_p for the logit function
 - > e_p would have a logistic distribution with a zero mean and variance $\frac{\pi^2}{3} = 3.29$
 - Variance is fixed cannot modify variance of Bernoulli distribution after modeling the mean

Linear Predictor

SAS PROC GENMOD

• SAS PROC GENMOD is a generalized modeling procedure with a good number of distributions and link functions

<u>Click here for the PROC GENMOD online documentation</u>

*CHANGING THE ORDER OF THE DEPENDENT VARIABLE; PROC GENMOD DATA=work.gradplan DESCENDING; MODEL Lapply = / ITPRINT DIST=BINOMIAL LINK=LOGIT; RUN;

- DESCENDING: models probability of a 1 (default is modeling 0)
- MODEL: works the same as PROC GLM and PROC MIXED
- ITPRINT: prints iteration details from ML algorithm (discussed soon)
- DIST = BINOMIAL: sets the distribution of the data to be BINOMIAL (Bernoulli is a Binomial with trials = 1)
- LINK = LOGIT: selects the logit link

Empty Model Output

• The empty model is estimating one parameter: β_0

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard	Wald 95% C	Confidence	Wald Chi-	Pr > Chi		
			Error	Limits		Square	Sq		
Intercept	1	-0.2007	0.1005	-0.3977	-0.0037	3.99	0.0459		
Scale	0	1	0	1	1				

- $\beta_0 = -0.2007 \ (0.1005)$: interpreted as the predicted **logit** of $y_p = 1$ for an individual when all predictors are zero
 - > Because of the empty model, this becomes average logit for sample
- Wald 95% Confidence Limits: (1.96 comes from standard normal Z)

$$-0.3977 = -0.2007 - 0.1005 * 1.96$$

$$-0.0037 = 0.2007 + 0.1005 * 1.96$$

- Wald Chi-Square: $3.99 = \left(\frac{0.2007}{0.1005}\right)^2$, compared with χ_1^2
 - > Square of a standard normal (Z) is a chi square

Predicting Logits, Odds, & Probabilities:

- <u>Coefficients for each form of the model:</u>
 - > Logit: $Log(p_p/1-p_p) = \beta_0$
 - Predictor effects are linear and additive like in regression, but what does a 'change in the logit' mean anyway?
 - Here, we are saying the average logit is -.2007
 - > Odds: $(p_p/1-p_p) = exp(\beta_0)$
 - A compromise: effects of predictors are **multiplicative**
 - Here, we are saying the average odds of a applying to grad school is exp(-.2007) = .819
 - > Prob: $P(y_p=1) = \frac{exp(\beta_0)}{1 + exp(\beta_0)}$
 - Effects of predictors on probability are nonlinear and non-additive (no "one-unit change" language allowed)
 - Here, we are saying the average probability of applying to grad school is .450

	Likelihood of Applying (1 = likely)								
	Lapply	Cumulative	Cumulative						
				Frequency	Percent				
	0	220	55	220	55				
	1	180	45	400	100				
'C	943 · Lecture 7								

More on the Empty Model

 The default coding in SAS doesn't model the probability of a 1, but models the probability of a zero:

$$logit(P(Y_p = 0)) = logit(1 - p_p) = \beta_0$$

- Removing the word DESCENDING from the PROC GENMOD line reverts to this method
- This changes the direction of the sign of the intercept (now negative; will change all other parameters, too):

Analysis Of Maximum Likelihood Parameter Estimates								
Parameter	DF	Estimate	Standard Error	Wald 95% Confidence Limits		Wald Chi- Square	Pr > ChiSq	
Intercept	1	0.2007	0.1005	0.0037	0.3977	3.99	0.0459	
Scale	0	1	0	1	1			

• How would you interpret this number?

PSYC 943: Lecture 7

MAXIMUM LIKELIHOOD ESTIMATION OF GENERALIZED MODELS

Maximum Likelihood Estimation of Generalized Models

- The process of ML estimation in Generalized Models is similar to that from the GLM, with two exceptions:
 - > The error variance is not estimated
 - The fixed effects do not have closed form equations (so are now part of the log likelihood function search)
- We will describe this process for the previous analysis, using our grid search
- Here, each observation has a Bernoulli distribution where the "height" of the curve is given by the PDF:

$$f(Y_p) = (p_p)^{Y_p} (1 - p_p)^{1 - Y_p}$$

• The generalized linear model then models

$$E(Y_p) = p_p = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)}$$

From One Observation...To The Sample

- The likelihood function shown previously was for one observation, but we will be working with a sample
 - > Assuming the sample observations are independent and identically distributed, we can form the joint distribution of the sample

$$\begin{aligned} & \text{Multiplication comes from independence assumption:} \\ & \text{Here}, L(\beta_0 | Y_p) \text{ is the Bernoulli PDF for } Y_p \text{ using a logit link for } \beta_0 \end{aligned} \\ & L(\beta_0 | Y_1, \dots, Y_N) = L(\beta_0 | Y_1) \times L(\beta_0 | Y_2) \times \dots \times L(\beta_0 | Y_N) \\ & = \prod_{p=1}^N f(Y_p) = \prod_{p=1}^N p_p^{Y_p} (1-p_p)^{1-Y_p} \\ & = \prod_{p=1}^N \left(\frac{\exp(\beta_0)}{1+\exp(\beta_0)} \right)^{Y_p} \left(1 - \left(\frac{\exp(\beta_0)}{1+\exp(\beta_0)} \right) \right)^{1-Y_p} \end{aligned}$$

The Log Likelihood Function

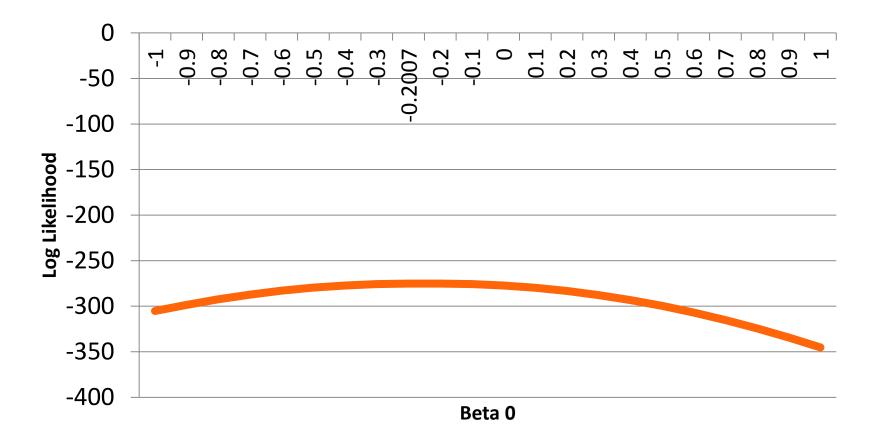
• The log likelihood function is found by taking the natural log of the likelihood function:

$$\log L(\beta_0 | Y_1, ..., Y_N) = \log(L(\beta_0 | Y_1) \times L(\beta_0 | Y_2) \times ... \times L(\beta_0 | Y_N))$$

= $\sum_{p=1}^{N} \log(L(\beta_0 | Y_p)) = \sum_{p=1}^{N} \log[p_p^{Y_p}(1-p_p)^{1-Y_p}]$
= $\sum_{p=1}^{N} Y_p \log(p_p) + (1-Y_p) \log(1-p_p)$
= $\sum_{p=1}^{N} Y_p \log(\frac{\exp(\beta_0)}{1+\exp(\beta_0)}) + (1-Y_p) \log(1-\frac{\exp(\beta_0)}{1+\exp(\beta_0)})$

Grid Search of the Log Likelihood Function

- Just like we did for the normal distribution, we can plot the log likelihood function for all possible values of β_0



Iteration History from PROC GENMOD

• Proc GENMOD lists the iteration history for the ML algorithm:

	Iteration History For Parameter						
	Estimates						
lter	Ridge	LogLikelihood	Prm1				
0	0	-275.27348	-0.219722				
1	0	-275.25553	-0.200651				
2	0	-275.25553	-0.200671				

• Following convergence, GENMOD also lists:

	Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF					
Log Likelihood		-275.2555						
Full Log Likelihood		-275.2555						
AIC (smaller is better)		552.5111						
AICC (smaller is better)		552.5211						
BIC (smaller is better)		556.5025						

At the Maximum...

- At the maximum ($\beta_0 = -0.2007$) we now assume that the parameter β_0 has a normal distribution
 - > Only the data Y have a Bernoulli distribution
- Putting this into statistical context:

$$\beta_0 \sim N\left(\hat{\beta}_0, se(\hat{\beta}_0)^2\right)$$

• This says that the true parameter β_0 has a mean at our estimate and has a variance equal to the square of the standard error of our estimate

ADDING PREDICTORS TO THE EMPTY MODEL

Adding Predictors to the Empty Model

 Having examined how the logistic link function works and how estimation works, we can now add predictor variables to our model:

$$g(E(Y_p)) = logit(P(Y_p = 0)) = logit(p_p)$$

= $\beta_0 + \beta_1 PAR_p + \beta_2(GPA_p - 3) + \beta_3 PUB_p$

$$p_{p} = E(Y_{p}) = g^{-1}(\beta_{0})$$

=
$$\frac{\exp(\beta_{0} + \beta_{1}PAR_{p} + \beta_{2}(GPA_{p} - 3) + \beta_{3}PUB_{p})}{1 + \exp(\beta_{0} + \beta_{1}PAR_{p} + \beta_{2}(GPA_{p} - 3) + \beta_{3}PUB_{p})}$$

$$V(Y_p) = p_p(1-p_p)$$

- Here PAR is Parent Education, PUB is Public University, and GPA is Grade Point Average (centered at a value of 3)
- For now, we will omit any interactions (to simplify interpretation)
- We will also use the default parameterization (modeling Y = 0)

• First...the Algorithm Iteration History:

Iteration History For Parameter Estimates									
Iter Ridge LogLikelihood Prm1 Prm2 Prm3 Pr									
0	0	-265.00194	0.3650003	-1.113614	-0.567908	0.2070592			
1	0	-264.9624	0.3381472	-1.059362	-0.548005	0.2004713			
2	0	-264.9624	0.3382338	-1.059612	-0.548246	0.2005571			
3	0	-264.9624	0.3382338	-1.059612	-0.548246	0.2005571			

Algorithm converged.

• Next, the log likelihood value:

	Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF					
Log Likelihood		-264.9624						
Full Log Likelihood		-264.9624						
AIC (smaller is better)		537.9248						
AICC (smaller is better)		538.0261						
BIC (smaller is better)		553.8907						

Question #1: Does Conditional Model Fit Better than Empty Model

- Question #1: does this model fit better than the empty model? $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ $H_1:$ At least one not equal to zero
- Deviance =-2*(-275.26 -264.96) = 20.6
 - > -275.26 is log likelihood from empty model
 - > -264.96 is log likelihood from this model
- DF = 4 1 = 3
 - Parameters from empty model = 1
 - Parameters from this model = 4
- P-value: p = .0001 (from "=chidist(20.6, 3)")

• Conclusion: reject H_0 ; this model is preferred to empty model PSYC 943: Lecture 7

Interpreting Model Parameters from SAS Output

• Parameter Estimates:

PROC GENMOD is modeling the probability that Lapply='0'. One way to change this to model the probability that Lapply='1' is to specify the DESCENDING option in the PROC statement.

	Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard	Wald 95% Confidence Limits		Wald Chi-	Pr >			
			Error			Square	ChiSq			
Intercept	1	0.3382	0.1187	0.1056	0.5709	8.12	0.0044			
parentGD	1	-1.0596	0.2974	-1.6425	-0.4767	12.7	0.0004			
GPA3	1	-0.5482	0.2724	-1.0822	-0.0143	4.05	0.0442			
PUBLIC	1	0.2006	0.3053	-0.3979	0.799	0.43	0.5113			
Scale	0	1	0	1	1					

- Intercept $\beta_0 = 0.3382 \ (0.1187)$: this is the predicted value for the **logit of y_p = 0** for a person with: 3.0 GPA, parents without a graduate degree, and at a private university
 - Converted to a probability: .583 probability a student with 3.0 GPA, parents without a graduate degree, and at a private university is unlikely to apply to grad school (y_p = 0)

Interpreting Model Parameters from SAS Output

	Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard	Wald 95% Confidence Limits		Wald Chi-	Pr >			
			Error			Square	ChiSq			
Intercept	1	0.3382	0.1187	0.1056	0.5709	8.12	0.0044			
parentGD	1	-1.0596	0.2974	-1.6425	-0.4767	12.7	0.0004			
GPA3	1	-0.5482	0.2724	-1.0822	-0.0143	4.05	0.0442			
PUBLIC	1	0.2006	0.3053	-0.3979	0.799	0.43	0.5113			
Scale	0	1	0	1	1					

parentGD: $\beta_1 = -1.0596 (0.2974); p = .0004$

The change in the **logit of** $y_p = 0$ for every one-unit change in parentGD...or, the difference in the **logit of** $y_p = 0$ for students who have parents with a graduate degree

Because logit of $y_p = 0$ means a rating of "unlikely to apply" this means that students who have a parent with a graduate degree are less likely to rate the item with an "unlikely to apply"

More on Slopes

• The quantification of **how much** less likely a student is to respond with "unlikely to apply" can be done using odds ratios or probabilities:

Odds Ratios:

- Odds of "unlikely to apply" (Y=0) for student with parental graduate degree: $\exp(\beta_0 + \beta_1) = .486$
- Odds of "unlikely to apply" (Y=0) for student **without** parental graduate degree: $\exp(\beta_0) = 1.402$
- Ratio of odds = $.346 = \exp(\beta_1)$ meaning, a student **with** parental graduate degree has 1/3 the odds of rating "unlikely to apply"

Probabilities:

- Probability of "unlikely to apply" for student with parental graduate degree: $\frac{\exp(\beta_0 + \beta_1)}{1 + \exp(\beta_0 + \beta_1)} = .327$
- Probability of "unlikely to apply" for student **without** parental graduate degree: $\frac{\exp(\beta_0)}{1+\exp(\beta_0)} = .584$

Interpreting Model Parameters from SAS Output

	Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard	Wald 95% Confidence Limits		Wald Chi-	Pr >			
			Error			Square	ChiSq			
Intercept	1	0.3382	0.1187	0.1056	0.5709	8.12	0.0044			
parentGD	1	-1.0596	0.2974	-1.6425	-0.4767	12.7	0.0004			
GPA3	1	-0.5482	0.2724	-1.0822	-0.0143	4.05	0.0442			
PUBLIC	1	0.2006	0.3053	-0.3979	0.799	0.43	0.5113			
Scale	0	1	0	1	1					

GPA3: $\beta_2 = -0.5482 (0.2724); p = .0442:$

The change in the **logit of** $y_p = 0$ for every one-unit change in GPA

Because logit of $y_p = 0$ means a rating of "unlikely to apply" this means that students who have a higher GPA are less likely to rate "unlikely to apply"

More on Slopes

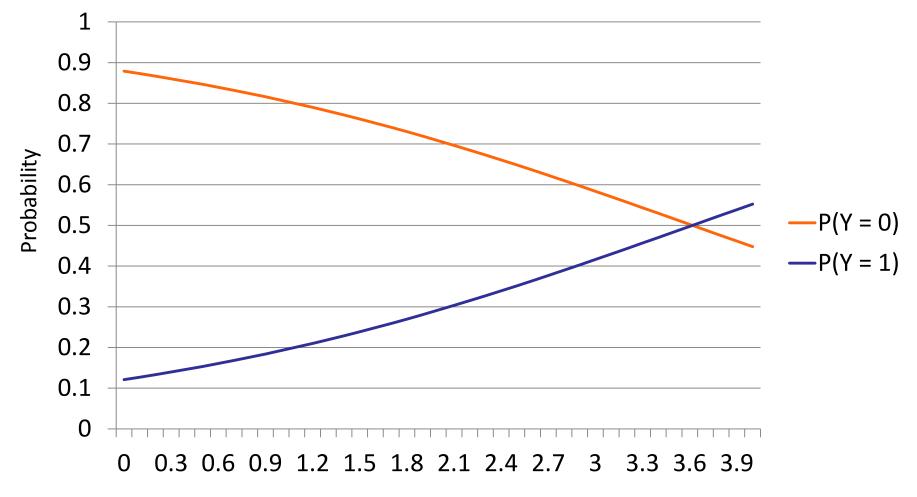
 The quantification of how much less likely a student is to respond with "unlikely to apply" can be done using odds ratios or probabilities:

GPA3	Logit	Odds of 0	Prob = 0
1	-0.210	0.811	0.448
0	0.338	1.402	0.584
-1	0.886	2.426	0.708
-2	1.435	4.198	0.808

- The odds are found by: $\exp(\beta_0 + \beta_2(GPA_p 3))$
- The probability is found by: $\frac{\exp(\beta_0 + \beta_2(GPA_p 3))}{1 + \exp(\beta_0 + \beta_2(GPA_p 3))}$

Plotting GPA

 Because GPA is an unconditional main effect, we can plot values of it versus probabilities of rating "unlikely to apply"



GPA

Interpreting Model Parameters from SAS Output

	Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard	Wald 95% Confidence Limits		Wald Chi-	Pr >			
			Error			Square	ChiSq			
Intercept	1	0.3382	0.1187	0.1056	0.5709	8.12	0.0044			
parentGD	1	-1.0596	0.2974	-1.6425	-0.4767	12.7	0.0004			
GPA3	1	-0.5482	0.2724	-1.0822	-0.0143	4.05	0.0442			
PUBLIC	1	0.2006	0.3053	-0.3979	0.799	0.43	0.5113			
Scale	0	1	0	1	1					

PUBLIC: $\beta_3 = 0.2006 (0.3053); p = .5113:$

The change in the **logit of** $y_p = 0$ for every one-unit change in GPA...

But, PUBLIC is a coded variable where 0 represents a student in a private university, so this is the difference in logits of the **logit of** $y_p = 0$ for students in public versus private universities

Because logit of 0 means a rating of "unlikely to apply" this means that students who are at a public university are more likely to rate "unlikely to apply"

More on Slopes

 The quantification of how much less likely a student is to respond with "unlikely to apply" can be done using odds ratios or probabilities:

Public	Logit	Odds of 0	Prob = 0
1	0.539	1.714	0.632
0	0.338	1.402	0.584

- The odds are found by: $\exp(\beta_0 + \beta_3 PUB_p)$
- The probability is found by: $\frac{\exp(\beta_0 + \beta_3 PUB_p)}{1 + \exp(\beta_0 + \beta_3 PUB_p)}$

Interpretation In General

- In general, the linear model interpretation that you have worked on to this point still applies for generalized models, with some nuances
- For logistic models with two responses:
 - Regression weights are now for LOGITS
 - > The direction of what is being modeled has to be understood (Y = 0 or = 1)
 - The change in odds and probability is not linear per unit change in the IV, but instead is linear with respect to the logit
 - Hence the term "linear predictor"
 - > Interactions will still function the same (see next week)
 - Will still modify the conditional main effects
 - Simple main effects are effects when interacting variables = 0

WRAPPING UP

Wrapping Up

- Generalized linear models are models for outcomes with distributions that are not necessarily normal
- The estimation process is largely the same: maximum likelihood is still the gold standard as it provides estimates with understandable properties
- Learning about each type of distribution and link takes time:
 - They all are unique and all have slightly different ways of mapping outcome data onto your model
- Logistic regression is one of the more frequently used generalized models – binary outcomes are common