
Estimation of GLMs –  
Least Squares and  
Least Other Things 

PSYC 943 (930): Fundamentals  
of Multivariate Modeling 

Lecture 5: September 7, 2012 

PSYC 943: Lecture 5 



A Note About The Schedge… 

• We have had a slight change in the schedule: 
 
 Today’s class:  

 Wrapping up from Wednesday (putting our new found mathematical statistics 
knowledge to use with GLMs) 

 Estimation of GLMs using Least Squares 
 Various *other* forms of estimation using “least” somethings 

 
 Next Wednesday’s class: 

 Maximum likelihood estimation of GLMs for continuous data (with normally 
distributed error terms) 
 

 Next Friday’s class: 
 Introduction to generalized models (not normally distributed error terms); 

more maximum likelihood estimation (just with different distributions) 
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Today’s Class 

• An introduction to estimation…#wtftemplin 
 

• Least squares estimation for GLMs 
 

• Other “least” type estimators for GLMs 
 “Quantile”/median regression (GLMs) 
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Why Estimation is Important 

• In “applied” statistics courses, estimation is not discussed  
very frequently 
 Can be very technical…very intimidating  

 

• Estimation is of critical importance 
 Quality and validity of estimates (and of inferences made from them) 

depends on how they were obtained  
 New estimation methods appear from time to time and get widespread use 

without anyone asking whether or not they are any good 

 
• Consider an absurd example: 

 I say the mean for IQ should be 20 – just from what I feel 
 Do you believe me? Do you feel like reporting this result? 

 Estimators need a basis in reality (in statistical theory) 
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How Estimation Works (More or Less) 
• Most estimation routines do one of three things: 

 
1. Minimize Something: Typically found with names that have “least” in the 

title. Forms of least squares include “Generalized”, “Ordinary”, 
“Weighted”, “Diagonally Weighted”, “WLSMV”, and “Iteratively 
Reweighted.” Typically the estimator of last resort… 
 

2. Maximize Something: Typically found with names that have “maximum” 
in the title. Forms include “Maximum likelihood”, “ML”, “Residual 
Maximum Likelihood” (REML), “Robust ML”. Typically the gold standard 
of estimators (and next week we’ll see why). 
 

3. Use Simulation to Sample from Something: more recent advances in 
simulation use resampling techniques. Names include “Bayesian Markov 
Chain Monte Carlo”, “Gibbs Sampling”, “Metropolis Hastings”, 
“Metropolis Algorithm”, and “Monte Carlo”. Used for complex models 
where ML is not available or for methods where prior values are needed. 
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ESTIMATION OF GLMS  
USING LEAST SQUARES 
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Estimation of General Linear Models 

• Recall our GLM (shown here for the prediction of a dependent 
variable 𝑌𝑝 by two independent variables 𝑋𝑝 and 𝑍𝑝): 

𝑌𝑝 = 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝 + 𝑒𝑝 
 

• Traditionally (dating to circa 1840), general linear models can be 
estimated via a process called least squares 
 

• Least squares attempts to find the GLM parameters (the 𝛽𝛽) that 
minimize the squared residual terms: 

min
{𝛽0,𝛽1,𝛽2,𝛽3} �𝑒𝑝2

𝑁

𝑝=1
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Where We Are Going (and Why We Are Going There) 

• Because the basics of estimation are critical to understanding the 
validity of the numbers you will use to make inferences from, we 
will detail the process of estimation 
 Today with Least Squares and then ending with Maximum Likelihood 

 

• The LS estimation we will discuss is to get you to visualize functions 
of statistical parameters (the 𝛽𝛽 here) and data in order to show 
which estimates we would choose 
 To be repeated: In practice LS estimation for GLMs does not do this (by the 

magic of calculus and algebra) 
 

• In the end, we would like for you to understand that not all 
estimators are created equally and that some can be trusted more 
than others 
 We would also like for you to see how estimation works so you can fix it 

when it goes wrong! 
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How Least Squares Estimation Works 

• How Least Squares works is through minimizing the squared error 
terms…but its what goes into error that drives the process: 

𝑒𝑝 = 𝑌𝑝 − 𝑌�𝑝 = 𝑌𝑝 − 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝  
 

• If you were to do this (and you wouldn’t), the process called 
optimization would go like this: 
 

1. Pick values for regression slopes  
2. Calculate 𝑌�𝑝 and then 𝑒𝑝 for each person 𝑝 

3. Calculate 𝑂𝑂 = ∑ 𝑒𝑝2𝑁
𝑝=1  (letters OF stand for objective function) 

4. Repeat 1-3 until you find the values of regression slopes that lead 
to the smallest value of 𝑂𝑂 
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Today’s Example Data #1 

• Imagine an employer is looking to hire employees for a job where IQ  
is important 
 We will only use 5 observations so as to show the math behind the 

estimation calculations 

• The employer collects two variables: 
 IQ scores 
 Job performance 

• Descriptive Statistics: 
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Variable Mean SD 

IQ 114.4 2.30 

Performance 12.8 2.28 

Covariance Matrix 

IQ 5.3 5.1 

Performance 5.1 5.2 

Observation IQ Performance 

1 112 10 

2 113 12 

3 115 14 

4 118 16 

5 114 12 



Visualizing the Data 
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Let’s Play…Pick the Parameters… 

• This slide is left as a placeholder for the Camtasia recording – we 
will now do a demonstration in R 
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And…The Winner Is… 
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Examining the Objective Function Surface 
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LS Estimates of GLMs  
• The process of least squares estimation of GLMs does not need an 

iterative search 
 

• Using calculus, a minimum of the objective function can be found 
 This involves taking the first derivative of the objective function with respect to 

each parameter 
 Derivative = slope of the tangent line for a given point 

 The first derivative is then set equal to zero 
 Flat slope = minimum (or maximum or saddle point – neither apply here) 

 The equation is then solved for the parameter 
 Producing the equations you know and love 

 
• For simple linear regression (one predictor): 

 𝛽𝑋 =
1

N−k ∑ 𝑋𝑝−𝑋� 𝑌𝑝−𝑌�𝑁
𝑝=1

1
N−k

∑ 𝑋𝑝−𝑋� 𝑋𝑝−𝑋�𝑁
𝑝=1

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜 𝑋 𝑎𝑎𝑎 𝑌
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜 𝑋 𝑎𝑎𝑎 𝑋

= 𝑠𝑠𝑠 𝑜𝑜 𝑐𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑠𝑠𝑠 𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋

 

 
• When we get to matrix algebra, you will know this as 

𝜷 = 𝐗𝑇𝐗 −1𝐗𝑇𝐲 
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Ramifications of Closed-Form LS Equations 

• Because least squares estimates have a closed form (equations that 
will provide statistics directly), they will work nearly every time 
 Only fail when collinearity is present (soon you’ll know this to mean 𝐗𝑇𝐗 is 

singular and cannot be inverted) 
 

• Virtually all other estimators you will encounter in statistics will not 
have a closed form 
 Even least squares estimators for other types of data (not continuous) 

 

• Without a closed form, least squares estimates are found by search 
the objective function for its minimum 
 Like finding the drain of a pool…. 
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Why LS is Still in Use 

• Least squares estimates still make up the bulk of GLM  
analyses because: 
 They are easy to compute  
 They pretty much always give you an answer 
 They have been shown to have good statistical properties 

 

• The good statistical properties actually come because LS estimates 
of GLMs match the Maximum Likelihood Estimates 
 We will learn more about maximum likelihood estimation next week 
 For now, know that MLEs are the gold standard when it comes to estimates 
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Where LS Fails 

• For all their flexibility, least squares estimates are somewhat limited 
 Only have good properties for basic univariate GLM for continuous data 

 Normally distributed error terms with homogeneous variance 
 

• When data are not continuous/do not have normally distributed 
error terms, least squares estimates are not preferred 
 

• For multivariate models with continuous data (repeated measures, 
longitudinal data, scales of any sort), least squares estimates quickly 
do not work 
 Cannot handle missing outcomes (deletes entire case) 
 Limited in the types of ways of modeling covariance between observations 
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OTHER TYPES OF “LEAST” 
ESTIMATORS: ROBUST GLMS 
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Other “Least” Estimators 
• In order to expand your estimation horizons and to introduce a new 

statistical technique, let’s consider what would happen if we were to 
make a seemingly small change to our least squares objective function 
 

• Recall our GLM (shown here for the prediction of a dependent variable 𝑌𝑝 
by two independent variables 𝑋𝑝 and 𝑍𝑝): 

𝑌𝑝 = 𝛽0 + 𝛽1𝑋𝑝 + 𝛽2𝑍𝑝 + 𝛽3𝑋𝑝𝑍𝑝 + 𝑒𝑝 
 

• Least squares attempts to find the GLM parameters (the 𝛽𝛽) that minimize 
the squared residual terms: 

min
{𝛽0,𝛽1,𝛽2,𝛽3} �𝑒𝑝2

𝑁

𝑝=1

 

• Instead of using the squared residual terms, we find the parameters that 
minimize the absolute residual terms: 

min
{𝛽0,𝛽1,𝛽2,𝛽3} � 𝑒𝑝

𝑁

𝑝=1
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Minimizing Absolute Residuals 

• The use of absolute residuals changes several properties of the 
estimates 
 Often this is called median regression or quantile regression (at quantile .5) 

 

• The estimator itself is called an 𝐿1 or robust estimator 
 The least squares estimator is called an 𝐿2 estimator 

 

• The regression line now includes the median of X and Y 
 

• The regression line is now “robust” to outliers 
 Think median instead of mode 

 

• More generally, any quantile 𝜏 (from 0-1, like %) can be specified: 
min

{𝛽0,𝛽1,𝛽2,𝛽3} � 𝜏 𝑒𝑝
𝑖∈ 𝑖:𝑦𝑖≥𝑦�𝑖

+ � 1 − 𝜏 𝑒𝑝
𝑖∈ 𝑖:𝑦𝑖<𝑦�𝑖
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Quantile Regression in SAS: PROC QUANTREG 

• Want to do quantile regression? There’s a PROC for that… 
 
 
 
 
 
 
 
 

• Note: MODEL statement is identical to PROC GLM before “/” 
 QUANTILE = .5 represents the median (trend for the median) 
 SEED = 7  represents the random number seed for resampling  
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Estimated Value from SAS/Comparison with LS Estimates 
Parameter Estimates 

Parameter DF Estimate Standard Error 95% Confidence Limits t Value Pr > |t| 
Intercept 1 12.4 1.5208 7.5603 17.2397 8.15 0.0039 

iqMC 1 1 0.8863 -1.8207 3.8207 1.13 0.3413 
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Objective Function Image 

• Here, the objective function is: 

𝑂𝑂 = � 𝑒𝑝

𝑁

𝑖=1
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Mathematical Issues with Quantile Regression 

• Because the regression function features an absolute value, the 
process of estimation gets complicated 
 Minimum point is not differentiable – so calculus can’t be used 

 

• The 𝐿1 estimator does not have a closed form (no equations) 
 

• SAS (or other software) uses a search algorithm to find the GLM 
slopes that minimize the objective function 
 This process can take a long time 

 

• The statistical properties of the slopes are not well known  
 Resampling is used to calculate standard errors 

 Resampling: running multiple analyses with a random set of the same data 
 If random number seed differs, results will differ… 
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Where Quantile Regression Helps…Outliers 

• Imagine we had observed a 6th case: a person with an IQ of 120 and 
a performance of 2 
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Comparing LS and Quantile Regression Results 

• Least Squares WITHOUT Outlier: 
 
 

• Least Squares WITH Outlier: 
 
 

• Quantile Regression WITHOUT Outlier: 
 
 

• Quantile Regression WITH Outlier: 
 

 
 

Parameter Estimate Standard Error t Value Pr > |t| 
Intercept 12.8 0.27926228 45.84 <.0001 

iqMC 0.96226415 0.13562175 7.1 0.0058 

Parameter Estimate Standard Error t Value Pr > |t| 
Intercept 11.5915493 2.14005638 5.42 0.0056 

iqMC -0.63380282 0.72305804 -0.88 0.4302 

Parameter Estimates 
Parameter DF Estimate Standard Error 95% Confidence Limits t Value Pr > |t| 
Intercept 1 12.4 1.5208 7.5603 17.2397 8.15 0.0039 

iqMC 1 1 0.8863 -1.8207 3.8207 1.13 0.3413 

Parameter Estimates 
Parameter DF Estimate Standard Error 95% Confidence Limits t Value Pr > |t| 
Intercept 1 12.4 22.3349 -49.6116 74.4116 0.56 0.6084 

iqMC 1 1 8.1904 -21.7401 23.7401 0.12 0.9087 
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Graphical Comparison 
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QUANTILE REGRESSION EXAMPLE 
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Using Quantile Regression 

• Quantile regression is a useful research tool for: 
 When data are skewed  
 Influential (potentially outlying) observations are present 
 Interactions between your IVs and your DV 

 

• Quantile regression (as in PROC QUANTREG) cannot help: 
 Dependency within or between cases  
 Non-constant variance of residual terms 
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Data Example #3: Change Detection Speed 

• To demonstrate quantile regression, we will use data where: 
 Y = Reaction Time (in seconds) to detect the change between two otherwise 

same pictures (mean across 60ish trials)  
 

 Age65 = Age in years, centered at 65 
 

 Nearvis_4 = near vision in logarithmic units (center point is 20/20 vision = 
.4) 
 Higher scores = worse vision 

 
• Our goal: to predict reaction time across all quantiles to see if age, 

near vision, or their interaction have an effect 
 In aging literature there is a debate about where slowing in reaction time 

happens: whether it is a general shift or it is more spread out 
 

• Our process: we will first fit (estimate) a least squares GLM and then 
use the quantile approach to investigate these data 
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First: Least Squares Estimates 

• We first analyze these data using PROC GLM: 
 
 
 

• Here were our results: 
 
 
 
 
 

• From this we *would* conclude that: 
 There was no age by near vision interaction 
 There was no simple (conditional) near vision main effect 
 As age increased, the conditional mean response time also increased 
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But…What About *THESE GUYS* (in residuals) 

THESE GUYS 
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From Least Squares to Quantiles  

• Next, we will subject these data to a quantile analysis using  
PROC QUANTREG 
 
 
 QUANTILE = PROCESS literally tries every quantile possible for these data 
 SEED = 8675309 http://www.youtube.com/watch?v=FkpGQUflBwU 

 Keeps the CIs the same 
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Interpreting Quantile Regression Results  

 
 
 
 
 
 
 
 
 

Interaction is significant for 
quantiles between .25ish and .4 

Main Effect of Age: Significant 
across all quantiles 
• BUT INTERPRETATION CHANGES 

DEPENDING ON SIGNIFICANCE 
OF INTERACTION 

Main Effect of Near Vision:  
Significant across all some lower quantiles 
• BUT INTERPRETATION CHANGES 

DEPENDING ON SIGNIFICANCE  
OF INTERACTION 

A Simple Description: 
http://www.youtube.com/watch?v=Ek0SgwWmF9w 
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Upon Further Review: For Specific Quantiles 

• PROC QUANTREG can give specific parameter estimates for any 
quantile, allowing for the same linear model interpretation for any 
part of the conditional distribution of the response variable (DV) 
 Interactions and main effects run the world 

 
 
 

• We will inspect the results from quantiles .25, .50, and .75 
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Results from Quantile .25 (FAST PEOPLE) 

 
 
 
 
 
 

• Intercept: predicted value for 25th percentile of reaction time for 
when age is 65 and near vision is perfect 

• Age65: increase in predicted value for 25th percentile of reaction 
time for every year of age when near vision is perfect 

• Nearvis_4: increase in predicted value of 25th percentile of reaction 
time for every one-unit decrease in near vision when age is 65 

• Age65*Nearvis_4: increase in the effect of age on the 25th 
percentile per unit increase in near vision –or– increase in the effect 
of near vision per year increase in age 

PSYC 943: Lecture 5 37 



Results from Quantile .5 (MIDDLE SPEED PEOPLE) 

 
 
 
 
 
 

• Intercept: predicted value for 50th percentile of reaction time for 
when age is 65 and near vision is perfect 

• Age65: increase in predicted value for 50th percentile of reaction 
time for every year of age when near vision is perfect 

• Nearvis_4: increase in predicted value of 50th percentile of reaction 
time for every one-unit decrease in near vision when age is 65 

• Age65*Nearvis_4: increase in the effect of age on the 50th 
percentile per unit increase in near vision –or– increase in the effect 
of near vision per year increase in age 
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Results from Quantile .75 (SLOW PEOPLE) 

 
 
 
 
 
 

• Intercept: predicted value for 75th percentile of reaction time for 
when age is 65 and near vision is perfect 

• Age65: increase in predicted value for 75th percentile of reaction 
time for every year of age when near vision is perfect 

• Nearvis_4: increase in predicted value of 75th percentile of reaction 
time for every one-unit decrease in near vision when age is 65 

• Age65*Nearvis_4: increase in the effect of age on the 75th 
percentile per unit increase in near vision –or– increase in the effect 
of near vision per year increase in age 
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QUANTILE REGRESSION  
IN OTHER FIELDS 
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Quantile Regression Use in Other Fields: Weather 

http://www.spc.noaa.gov/wcm/adj.html 
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Quantile Regression Use in Other Fields: Salaries 
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WRAPPING UP 
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Wrapping Up 

• Today discussed estimation, and in the process showed how 
differing estimators can give you different statistics 

 

• The key today was to shake your statistical view point:  
 There are many more ways to arrive at statistical results than you may know 

 
• The take home point is that not all estimators are created equal 

 If ever presented with estimates: ask how the numbers were attained 
 If ever getting estimates: get the best you can with your data 

 

• Next week your world will further be expanded when we introduce 
maximum likelihood estimators 
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