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Today’s Class

- The building blocks: The basics of mathematical statistics:
> Random variables: definitions and types

> Univariate distributions
+ General terminology
+ Univariate normal (aka, Gaussian)
+ Other popular (continuous) univariate distributions

> Types of distributions: marginal, conditional, and joint
> Expected values: means, variances, and the algebra of expectations
> Linear combinations of random variables

« The finished product: How the GLM fits within statistics
> The GLM with the normal distribution
> The statistical assumptions of the GLM
> How to assess these assumptions
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RANDOM VARIABLES
AND STATISTICAL DISTRIBUTIONS



TENL IO RERELES

Random: situations in which the certainty of the outcome is unknown
and is at least in part due to chance

<+

Variable: a value that may change given the scope of a given problem
or set of operations

Random Variable: a variable whose outcome depends on chance

(possible values might represent the possible outcomes of a yet-to-be-
performed experiment)

Today we will denote a random variable with a lower-cased: x
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Types of Random Variables

- Random variables have different types:

1. Continuous

> Examples of continuous random variables:

+ x represents the height of a person, drawn at random
+ Y, (the outcome/DV in a GLM)

2. Discrete (also called categorical, generally)

> Example of discrete:
+  xrepresents the gender of a person, drawn at random

3.  Mixture of Continuous and Discrete:

> Example of mixture:

response time (if between 0 and 45 seconds)
0

. X represents {

PSYC 943: Lecture 4 5



Key Features of Random Variables

- Random variables each are described by a probability density/mass
function (PDF) f (x) that indicates relative frequency of occurrence

> A PDF is a mathematical function that gives a rough picture of the
distribution from which a random variable is drawn

- The type of random variable dictates the name and nature of
these functions:

> Continuous random variables:
+ f(x) is called a probability density function
+ Area under curve must equal 1 (found by calculus — integration)

+ Height of curve (the function value f(x)):
— Can be any positive number
— Reflects relative likelihood of an observation occurring

> Discrete random variables:
+ f(x) is called a probability mass function
+ Sum across all values must equal 1
+ The function value f(x) is a probability (so must range from 0 to 1)
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Other Key Terms

- The sample space is the set of all values that a random variable x

can take:
> The sample space for a random variable x from a normal distribution
(x ~ N(uy,, 02)) is (—o0, o) (all real numbers)

> The sample space for a random variable x representing the outcome of a
coin flipis {H, T}

> The sample space for a random variable x representing the outcome of a
roll of adieis {1,2,3,4,5, 6}

-  When using generalized models (discussed next week), the trick is

to pick a distribution with a sample space that matches the range of
values obtainable by data
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Uses of Distributions in Data Analysis

Statistical models make distributional assumptions on various
parameters and/or parts of data

These assumptions govern:
> How models are estimated
> How inferences are made
> How missing data may be imputed

If data do not follow an assumed distribution, inferences

may be inaccurate
> Sometimes a very big problem, other times not so much

Therefore, it can be helpful to check distributional assumptions

prior to (or while) running statistical analyses
> We will do this at the end of class
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CONTINUOUS UNIVARIATE
DISTRIBUTIONS



Continuous Univariate Distributions

To demonstrate how continuous distributions work and look, we

will discuss three:
> Uniform distribution

> Normal distribution

> Chi-square distribution

. Each are described a set of parameters, which we will later see are

what give us our inferences when we analyze data

- What we then do is put constraints on those parameters based on

hypothesized effects in data
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Uniform Distribution

« The uniform distribution is shown to help set up how continuous
distributions work

. For a continuous random variable x that ranges from (a, b), the
uniform probability density function is:

1
fe)=+—

. The uniform distribution has

two parameters:
> a—the lower limit
> b —the upper limit

- x~U(a,b)

| "1 A ———
e et e
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More on the Uniform Distribution

- To demonstrate how PDFs work, we will try a few values:

x| e b f®
5 0 1 1

=1
1-0
75 0 1 1
— =1
1-0
15 0 20 1
= .05
20—0
15 10 20 1 1
20—10 °

- The uniform PDF has the feature that all values of x are equally
likely across the sample space of the distribution
> Therefore, you do not see x in the PDF f(x)

- The mean of the uniform distribution is % (a + b)

. The variance of the uniform distribution is 1—12 (b — a)?
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Univariate Normal Distribution

- For a continuous random variable x (ranging from —oo to o) the
univariate normal distribution function is:
(x o ,th)2>

1
f(x) = ﬁexp (‘ 202

- The shape of the distribution is governed by two parameters:
» The mean u,
> The variance g2

> These parameters are called sufficient statistics (they contain all the
information about the distribution)

- The skewness (lean) and kurtosis (peakedness) are fixed

. Standard notation for normal distributions is x ~ N (u,, 02)
» Read as: “x follows a normal distribution with a mean u, and a variance g;”

- Linear combinations of random variables following normal distributions
result in a random variable that is normally distributed
> You’ll see this later with respect to the GLM...
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Univariate Normal Distribution

1.0
N =0, 0%=0.2, =—| |
H=0, O?=1.0, m=—
08 [=0, 0?=5.0, —[
- P=-2, 0?=0.5, ==| _

0.6

Fx)
™~
_

f(x) gives the height of the curve (relative frequency) for any value of x, y,, and o2
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More of the Univariate Normal Distribution

. To demonstrate how the normal distribution works, we will try a

few values:
I S N 7
0 1 0.352
75 0 1 0.301
5 0 5 0.079
75 -2 1 0.009
-2 -2 1 0.399

- The values from f(x) were obtained by using Excel
> The “=normdist()” function
> Most statistics packages have a normal distribution function

- The mean of the normal distribution is u,,
. The variance of the normal distribution is ¢.2
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Chi-Square Distribution

- Another frequently used univariate distribution is the

Chi-Square distribution
> Sampling distribution of the variance follows a chi-square distribution
> Likelihood ratios follow a chi-square distribution

 For a continuous random variable x (ranging from 0 to o), the
chi-square distribution is given by:

1 v_ X
AR AT oo (3)

. T'(*) is called the gamma function

- The chi-square distribution is governed by one parameter: v

(the degrees of freedom)
> The mean is equal to v; the variance is equal to 2v
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(Univariate) Chi-Square Distribution

J

111 1
LA ) b

oo e o

0.8

f(x)
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MARGINAL, JOINT, AND
CONDITIONAL DISTRIBUTIONS



Moving from One to Multiple Random Variables

«  When more than one random variable is present, there are several
different types of statistical distributions:

- We will first consider two discrete random variables:
> x is the outcome of the flip of a penny (H), T},)
o f(x=Hy,)=5;f(x=T,) =.5
> zis the outcome of the flip of a dime (Hy, Ty)
s fz=Hy) =.5;f(z=Ty) =.5

- We will consider the following distributions:

» Marginal distribution
+ The distribution of one variable only (either f(x) or f (2))

» Joint distribution
+ f(x,z): the distribution of both variables (both x and z)

»> Conditional distribution

+ The distribution of one variable, conditional on values of the other:
- f(x|z2): the distribution of x given z
- f(z]x): the distribution of z given x
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Marginal Distributions

- Marginal distributions are what we have worked with exclusively up

to this point: they represent the distribution of one variable by itself

> Continuous univariate distributions:
+ Uniform
+ Normal
+ Chi-square

» Categorical distributions in our example:

+ The flip of a penny f(x)
+ The flip of a dime f(2)
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Joint Distributions

- Joint distributions describe the distribution of more than one variable,
simultaneously
> Representations of multiple variables collected

-  Commonly, the joint distribution function is denoted with all random
variables separated by commas

> Inour example, f(x, z) is the joint distribution of the outcome of flipping both a
penny and a dime
+ As both are discrete, the joint distribution has four possible values:

flx=Hyz=Hy),f(x=Hyz=Ty),f(x =Tp,z=Hy), f(x =Tp,z=Ty)

. Joint distributions are multivariate distributions

> We will cover the continuous versions of these in a few weeks
+ The multivariate normal distribution

> For our purposes, we will use joint distributions to introduce two topics
+ Joint distributions of independent variables
+ Joint likelihoods (next class) — used in maximum likelihood estimation
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Joint Distributions of Independent Random Variables

- Random variables are said to be independent if the occurrence of
one event makes it neither more nor less probable of another event
> For joint distributions, this means: f(x,z) = f(x)f(2)

« In our example, flipping a penny and flipping a dime are
independent — so we can complete the following table of

their joint distribution: Joint
Dime ’(Penny, Dime)

| z=Hs | z=Tq |
x=H, f(x=Hy,z=H,) Lﬁ(”{H;:Z =Ty) f(x=Hy) Marginal
x=T, f(x=Tyz=H)) flx=Tyz=T,) flx=Ty PV
f(z=Hg) f(z=Ty)

Penny

Marginal
(Dime)
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Joint Distributions of Independent Random Variables

- Because the coin flips are independent, this becomes:
Joint

Dime (Penny, Dime)

I T 7R TR

x=Hy, f(x=H)f(z=Hy) f[f(x=H,)f(z=T;) f(x=Hy) Marginal

Penny Penn
x=T, fx=T)f(z=Hy) fx=T)f(z=T,) [flx=Ta) (Penny)
f(z =Hy) fz=Ty)
Marginal
_ (Dime)
.« Then, with numbers: Joint
Dime (Penny, Dime)
I T R T
x = H, 25 25 5 Marginal
ey =1, 25 25 5 (Penny)
.5 .5

Marginal
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Marginalizing Across a Joint Distribution

. If you had a joint distribution, f(x, z), but wanted the marginal
distribution of either variable (f (x) or f(z)) you would have to
marginalize across one dimension of the joint distribution

. For categorical random variables, marginalize = sum across

F&) =) )

Z
> Forexamplef(x = Hp) =f(x =Hy,z = Hp) +f(x =Hy,z = Tp) =.5

. For continuous random variables, marginalize = integrate across
> No integration needed from you — just a conceptual understanding
> Here, the integral = an eraser!

F0) = j f(x, 2)dz
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Conditional Distributions

- For two random variables x and z, a conditional distribution is
written as: f(z|x)
> The distribution of z given x

- The conditional distribution is also equal to the joint distribution
divided by the marginal distribution of the conditioning
random variable

f(zx)
f(x)

fzlx) =

- Conditional distributions are found everywhere in statistics

> As we will see, the general linear model uses the conditional distribution of
the dependent variable (where the independent variables are the
conditioning variables)
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Conditional Distributions

- For discrete random variables, the conditional distribution is fairly

easy to show: Joint
Dime (Penny, Dime)
| z=Hy | z=Tq |
X = Hp 25 .25 .5 Marginal
ey =, 25 25 5 (Penny)
5 5
Marginal
(Dime)
Conditional: f(z|x = Hp):
f(z=Hyx=H,) .25
f(z=Hd|x=Hp)= — E/ = c =.5
f(x =Hp) '
f(z = Td|x = Hp) = f(Z = Tax = Hp) = 25 =5 We will show a continuous
f(x = Hp) 5 conditional distribution with

the GLM in a few slides
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EXPECTED VALUES AND THE
ALGEBRA OF EXPECTATIONS



Expected Values

- Expected values are statistics taken the sample space of a random
variable: they are essentially weighted averages

. The weights used in computing this average correspond to the
probabilities (for a discrete random variable) or to the densities
(for a continuous random variable).

- Notation: the expected value is represented by: E(x)

> The actual statistic that is being weighted by the PDF is put into the
parentheses where x is now

- Expected values allow us to understand what a statistical model
implies about data, for instance:
> How a GLM specifies the (conditional) mean and variance of a DV
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Expected Value Calculation

For discrete random variables, the expected value is found by:

E(x) = sz(X = X)

X
For example, the expected value of a roll of a die is:

1 1 1 1 1 1
E(x) = (1)E+(2)E+(3)E+(4)E+(5)E+(6)E= 3.5

For continuous random variables, the expected value is found by:

E(x) =f xf(x)dx

We won’t be calculating theoretical expected values with
calculus...we use them only to see how models imply things about
our data
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Variance and Covariance...As Expected Values

A distribution’s theoretical variance can also be written as an
expected value:

2
— _ 2
V(x) = E(x —E(x)) =E(x — u,)
> This formula will help us understand predictions made GLMs and how that
corresponds to statistical parameters we interpret

For a roll of a die, the theoretical variance is:
V(x) = E(x — 3.5)% = %(1 —35)% + % (2 —3.5)2 + % (3 —3.5)2 +
%(4 —35)% + % (5 —3.5)2 + % (6 —3.5)2 = 2.92
> Likewise, the SD is then v/2.92 = 1.71

Likewise, for a pair of random variables x and z, the covariance can
be found from their joint distributions:
Cov(x,z) = E(xz) — E(X)E(z) = E(xz) — Uy li,
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LINEAR COMBINATIONS OF
RANDOM VARIABLES



Linear Combinations of Random Variables

A linear combination is an expression constructed from a set of terms
by multiplying each term by a constant and then adding the results

X =a.v; +a,vy, +--+a,v,

> The linear regression equation is a linear combination

- More generally, linear combinations of random variables have
specific implications for the mean, variance, and possibly covariance
of the new random variable

- Assuch, there are predicable ways in which the means, variances,

and covariances change
> These terms are called the algebra of expectations

- To guide us through this process, we will use the descriptive
statistics from the height/weight/gender example from our 15t class
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Descriptive Statistics for Height/Weight Data

Height 67.9 7.44 55.358
Weight 183.4 56.383 3,179.095
Female 0.5 0.513 0.263

Above Diagonal:
Diagonal: Variance Covariance

Correlation
/Covanance

55.358 334.832 -2.263

m 798 3,179.095 -27.632
m -.593 -.955 263

Below Diagonal:
Correlation
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Algebra of Expectations

Here are some properties of expected values (true for any type of
random variable): x and z are random variables, ¢ and d constants

Sums of Constants:

E(x+c)=E(x)+c
Vix+c) =V(x)
Cov(x +c,z) = Cov(x, z)
Products of Constants:

E(cx) = cE(x)
V(icx) = c?V(x)
Cov(cx,dz) = cdCov(x, z)
Sums of Random Variables:
E(cx +dz) = cE(x) + dE(2)
V(ex + dz) = ¢?V(x) + d?V(2) + 2cd(Cov(x, 2))
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Examples for Algebra of Expectations

Image you wanted to convert weight from pounds to kilograms (where 1
pound = 0.453 kg)

Weighty, = .453Weighty,

The mean (expected value) of weight in kg:
E(Weighty,) = E(453Weighty,) = .453E (Weight;;,) = .453Weighty,
= .453 * 183.4 = 83.08kg

The variance of weight in kg:
V(Weighty,) = V(453Weight,) =.4532V (Weight,;,)
=.453%% 3,179.095 = 652.38kg*

The covariance of weight in kg with height in inches:
Cov(Welghtkg,Helght) Cov(.453Weight;,, Height)
= .453Cov(Weight;;,, Height) = .453 * 334.832
= 151.68kg * inches
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Don’t Take My Word For It...

SAS syntax for transforming weight in a DATA step:

DATA htwt:

INPUT id Gender % height weight :

IF Gender = '"F' THEN female=1; IF Gender = '"M' THEN female=0;
heightMC height-67.9;

weightEG 0.453*weight;

SAS syntax for marginal descriptive statistics and covariances:

*NEW SAMPLE STATISTICS FCOR WEIGHT:
PROC MEAWS DATR=htwt MERN VAR;
VLR weight weightEG;

RIOH;

PROC CORR DARTR=htwt COCV;
VLR weight weightEG height;
RIOH;

SAS output:

Covariance Matrix, DF =19

The MEANS Procedure - - -
weight|weightKG | height
Variahle Mean Vﬂrianﬂe WElght 3175.004737 14401289156 | 334.83157%
weight 183.4000000 3179.09 weightKG 1440.129916 652.378852 || 151.678705
weightkiG £3.0802000 §52. 3788519
hEight 334.831579 151.678705 | 55.3578895
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Where We Use This...The Dreaded ESTIMATE Statement

- The ESTIMATE statement in SAS computes the expected value and

standard error (square root of variance) for a new random variable

> The new random variable is a linear combination of the original model
parameters (the fixed effects)

> The original model parameters are considered “random” here as their
sampling distribution is used (assuming normal errors and a large N)

HMCODEL score = Dgroupd Dgroup3 Dgroupd experienced enthusiasm
Doroup2 *experienced Dgroup3*experienced Dgroupd*experienced / SOLUTICN:
ESTIMATE 'experience for mini' experienced4 1 dgroupZ*experienced 1;

Estimate = 1 .Bexperience4 + 1+ .BGZ*experienceél

. Where:

. 2
> :Bexperience4 has mean IBexperienceAl and variance Se(ﬁexperienceﬁl)

— . 2
> :BGZ*experience4haS mean ﬁGZ*experienceéL and variance Se(IBGZ*expe'rienceéL)
> There exists a covariance between Beyperiences aNd Beosexperiences

) . -
+ We'll call this Cov(lgexperienceéh IBGZ*experienceél)
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More ESTIMATE Statement Fun

. So...if the estimates are:

Parameter Estimate | Standard Error | t Value | Pr = |t|
Intercept 7549934727 0.38707620 19505 =0001
Dgroup2 -10.07267266 0.54896179 | -18.35 =.0001
Dgroup3 4 17623925 0.54961852 7.60  =0001
Dgroupd -5.04195829 0.54912685 -11.00 =0001
experienced -0.38518388 0.29569936 -1.30 0.1943
enthusiasm 500727782 0.18730608 -26.73 <0001

Dgroup2*experienced | -0.63103823 0.39198136 -1.61 0.1091
Dgroup3*experienced | -0.10925920 0.41111045 -0.27 | 0.7907
Dgroupd®experienced | 0.16959725 041917025 040 0.6862

> And Cov(ﬁexp;‘;nceéb ,BGZ*experience4} — T :VO0/00
...\What is:
E(Estimate) = E(l * ,Bexperienceél + 1% :BGZ*experienceél)
=1x E(:Bexperienceél) + 1« E(:BGZ*experienceéL) = —.385-.631 = —-1.016
V(Estimate) = V(]- * .Bexperience4 + 1= ﬂGZ*experiencM)
= 12V(:Bexperience4) + 12V(ﬁ62*experience4) + 21

* 16017(,8experience4r IBGZ*experienceAL) =
.296% +.391%2 —2 * .08756 = .0653

Parameter Estimate Standard Error | t Value | Pr = |t

Se(EStlmate) — \/V(EStlmate) — 257 experience for mini = -1.0162221 0.25685951 -3.96  0.0001
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THE GENERAL LINEAR MODEL WITH
WHAT WE HAVE LEARNED TODAY



The General Linear Model, Revisited

- The general linear model for predicting Y from X and Z:
Yp —_ ﬁo + ,BlXp + ﬁZZp + ﬁgXpr + ep

In terms of random variables, under the GLM:

- ey is considered random: e, ~ N (O, o2)
- Y,is dependent on the linear combination of Xp, 2L, and e,

- The GLM provides a model for the conditional distribution of the
dependent variable, where the conditioning variables are the
independent variables: f(Y,|X,, Z,)

> There are no assumptions made about X, and Z,, - they are constants

> The regression slopes Sy, 1, 52, B3 are constants that are said to be fixed at
their values (hence, called fixed effects)
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Combining the GLM with Expectations

Using the algebra of expectations predicting Y from X and Z:
The expected value (mean) off(Yp|Xp, Zp):
Y, = E(Yp) = E(Bo + B1Xp + B2Zp + ﬁgxpzpm_e'g)

|
Constants Random
Variable with
E(ep) =0

— ﬁo + ﬁ]_Xp + EZZp + ﬁgXpr + E(ep)
= Bo + b1 Xy + 22y + B3XpZ)

The variance of f(Yp|Xp, Zp):
V(Y,) =V(Bo + B1Xp + BaZp + B3XpZ, + €,) =V(ey) = 02
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Distribution of f(Y,|X,, Z,)

- We just found the mean (expected value) and variance implied by
the GLM for the conditional distribution of Y,, given X, and Z,,

- The next question: what is the distribution off(Yp|Xp,Zp)?

- Linear combinations of random variables that are normally
distributed result in variables that are normally distributed

- Because e, ~ N(0, g2) is the only random term in the GLM, the
resulting conditional distribution of Y,, is normally distributed:

Yp ~ N(ﬁo + ,BlXp + ﬁZZp + ﬁgXpr"O-ezi’

1

Model for the means: from fixed
effects; literally gives mean of

f(Yp|Xp, Zp)
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Model for the variances:
from random effects; gives

variance off(Yp |Xp,Zp)
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Examining What This Means in the Context of Data

. If you recall from our first lecture, the final model we decided to
interpret: Model 5

W, = Bo + B1(H, — H) + BoF, + B3(H, — H)E, + ¢,

where e, ~ N(0,0¢)

« From SAS:
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Parameter Estimate | Standard Error|t Value |Pr > |t|
|nterCEpt 2221841715 0.232809103 25511 = 0001
hElg htMC 31887275 011135027 28865 = 0001
femﬂle 822718218 1.21109969 £7.83 <. 0001

heightMC*female

-1.0938553

01877741

-5.52

<. 01001
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Picturing the GLM with Distributions

The distributional assumptions of
the GLM are the reason why we
do not need to worry if our
dependent variable is normally
distributed

Our dependent variable should be
conditionally normal

We can check this assumption by

checking our assumption about

the residuals, e, ~ N(0, o)
More on this soon...
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More Pictures of the GLM

. Treating our estimated values of the slopes (8, 51, 82, f3) and the
residual variance (62) as the true values* we can now see what the

theoretical* distribution off(Weightp|Heightp, Femalep) looks
like for a given set of predictors

Height=62 Female=1 Height=76 Female=0

015
|
015
|

0.10
|

fiY | X)
fiY | X)

0.05
|
0.05
|

0.00
|
0.00
|

I I I I I I I I I I I I
115 120 125 130 135 140 235 240 245 250 255 260

Weight Weight

*Note: these distributions change when sample estimates

are used (think standard error of the prediction)
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Behind the Pictures...

To emphasize the point that PDFs provide the height of the line, here is the normal
PDF (with numbers) that produced those plots:

~ N2
1 w, — W,
f(VVlep,Fp) = — exp (— ( ngez p) ) Model for the Means
\Y e

1 ( (W, — (Bo.+ By (Hy — H) + BoFy + B (Hy — H)Fv)bz)
eXp - 2
2 cd

1 < (W, — (222.18 + 3.19(H, — H) — 82.27F, — 1.09(H,, — H)Fp))2>
exp| —

N \J2m(4.73) 2(4.73)

I Model for the Variance I

The plots were created using the following value for the predictors:

H = 67.9
Left plot: H, = 62;FE, =1
Right plot: H, =76;F, =0
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ASSESSING UNIVARIATE
NORMALITY IN SAS



Assessing Univariate Normality in SAS

The assumption of normally distributed residuals permeates GLM

> Good news: of all the distributional assumptions, this seems to be the least
damaging to violate. GLMs are robust to violations of normality.

Methods exist to examine residuals from an analysis and thereby
determine the adequacy of a model

> Graphical methods: Quantile-Quantile plots (from PROC GLM)
> Hypothesis tests (from PROC UNIVARIATE)

Both approaches have problems
> Graphical methods do not determine how much deviation is by chance

> Hypothesis tests become overly sensitive to small deviations when sample
size is large (have great power)

To emphasize how distributions work, we will briefly discuss both
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Assessing Distributional Assumptions Graphically

- A useful tool to evaluate the plausibility of a distributional
assumption is that of the Quantile versus Quantile Plot
(more commonly called a Q-Q plot)

- A Q-Qplotis formed by comparing the observed quantiles of a
variable with that of a known statistical distribution

> A quantile is the particular ordering of a given observation
> In our data, a person with a height of 71 is the 39t tallest person (out of 50)

> This would correspond to the person being at the % = .77 or .77

percentile of the distribution (taller than 77% of the distribution)

> The Q-Q plot then converts the percentile to a quantile using the sample
mean and variance
+ A quantile is the value of an observation at the 77" percentile

. |If the data deviate from a straight line, the data are not likely to
follow from that theoretical distribution
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Q-Q Plots of GLM Residuals

-  When you turn on the ODS Graphics, SAS PROC GLM will provide
Q-Q plots for you with one command (PLOTS = ):

CDS5 HTML STYLE=harvest:;
CD5 GRLPHICS CH; . .
Q-Q Plot of Residuals for weight
*Model #5: centered height and gender (with interaction):
PROC GLM DATZ=work.htwt PLOTS5= (ALL DIAGHNOSTICS (UNPACK)):
MODEL weight = heightMC female heightMC*female/S0LUTION: <
CUTEFUT OUI=work.diagnost residuals=residual p=predicted;
RUH; QUIT:
o
2 1 o ©
o
Lo &
. M
If residuals are normally 3 oo
. . o — 0
distributed, they will fall 7&— o
on the line -
o 0
g g
o
o
44 "
T T T T T
-2 -1 0 1 2
Quantile
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Example Q-Q Plot of Non-Normal Data
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Hypothesis Tests for Normality

- Additionally, using PROC UNIVARIATE, you can receive up to four
hypothesis tests for testing Hy: Data come from normal distribution

*Model #5: centered height and gender (with interaction):
FROC GLM DATA=work.htwt PLOTS= (ALL DIAGNOSTICS (UNPACK) ) :
HMODEL weight = heightMC female heightMC*female/S0LUTICH:

OOTPUT COUT=work.diagnost residuals=residual pﬁredicted:@ Syntax for SaVing residuals in PROC GLM
RUN; QUIT:

PROC UNIVARIATE DATA=work.diagnost NOERMAL; <<E_;

VAR residual; — Use new data set in PROC UNIVARIATE

EIOH ;

PROC UNIVARIATE Output:

Tests for Normality
Test Statistic p Value

Shapiro-Wilk W "™ IPr<W ™™ |fagiven test is significant, then it is
Kolmogorov-Smirnov|D  |*™*/Pr>D  |"™"}  s5ying that your data do not come
Cramer-von Mises  |W-Sq|"***|Pr > W-8q|""*""]  from a normal distribution

Anderson-Darling A-Sq |“5*# | Pr > A-Sq |77

In practice, test will give diverging information quite frequently:
the best way to evaluate normality is to consider both plots and tests (approximate = good)
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Wrapping Up Today’s Class

- Today was an introduction to mathematical statistics as a way to
understand the implications statistical models make about data

.« Although many of these topics do not seem directly relevant, they
help provide insights that untrained analysts may not easily attain
> They also help you to understand when and when not to use a model!

-  We will use many of these same tools in our next class:

Estimation of GLMs:
Then (Least Squares) and Now (Maximum Likelihood)
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