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• Topics:
 Models for skewed discrete outcomes
 Models for skewed continuous outcomes
 Models for zero-inflated discrete or continuous outcomes
 Complications for generalized multilevel models

 Multivariate or multilevel data



3 Parts of Generalized Multilevel Models

1. Link Function (different from general): How the conditional 
mean of a non-normal outcome is made unbounded so that 
the model fixed and random effects can predict it linearly

2. Linear Predictor (same as in general): How the model 
predictors linearly relate to the outcome conditional mean

3. Model for Level-1 Residuals (different than general): 
how the level-1 residuals should be distributed given 
the sample space (possible values) of the actual outcome
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2. Fixed (and Random) 
Effects of Predictors=1. Link 

Function
3. Actual 

Data



A Taxonomy of Not-Normal Outcomes
• “Discrete” outcomes—all responses are whole numbers
 Categorical variables in which values are labels, not amounts

 Binomial (2 options) or multinomial (3+ options) distributions
 Question: Are the values ordered  which link? 

 Count of things that happened, so values < 0 cannot exist
 Sample space goes from 0 to positive infinity
 Poisson or Negative Binomial distributions (usually)
 Log link (usually) so predicted outcomes can’t go below 0
 Question: Are there extra 0 values? What to do about them?

• “Continuous” outcomes—responses can be any number
 Question: What does the residual distribution look like?

 Normal-ish? Skewed? Cut off? Mixture of different distributions?
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A Revised Taxonomy
• Rather than just separating into discrete vs. continuous, think 

about models based on their shape AND kinds of data they fit
 Note: You can use continuous models for discrete data (that only have 

integers), but not discrete models for continuous data (with decimals)

1. Skewed-looking distributions
 Discrete: Poisson, Generalized Poisson, Negative Binomial (NB)

 Continuous: Log-Normal, Beta, Gamma

2. Skewed with a pile of 0’s: Becomes If 0 and How Much
 These models will differ in how they define the “If 0” part

 Discrete: Zero-Inflated Poisson or NB, Hurdle Poisson or NB

 Continuous: Two-Part (with normal or lognormal for the how much part) 
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Discrete Models for Count Outcomes
• Counts: non-negative integer unbounded responses

 e.g., how many cigarettes did you smoke this week?
 Traditionally uses natural log link so that predicted outcomes stay ≥ 0

•  ⦁ Log E y୧ ൌ Log μ୧ ൌ model predicts mean of y୧
• ି ⦁ Eሺy୧ሻ ൌ expሺmodel)  to un-log it, use expሺmodelሻ

 e.g., if Log μ୧ ൌ model provides predicted Logሺμ୧ሻ ൌ 1.098, 
that translates to an actual predicted count of exp 1.098 ൌ 3

 e.g., if Log μ୧ ൌ model provides predicted Log(μ୧ሻ ൌ െ5, 
that translates to an actual predicted count of exp െ5 ൌ 0.006738

 If people have different lengths of time in which counts were observed, 
you can include that info as an “offset” in the MODEL statement

• So that’s how linear model predicts μ୧, the conditional mean 
for yi, but what about residual variance?
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Poisson Distribution for Residuals
• Poisson distribution has one parameter, ߣ, which is both its 

mean and its variance (so ߣ = mean = variance in Poisson)

• ݂ y୧|λ ൌ Prob y୧ ൌ y ൌ ౯∗ୣ୶୮ ି
୷!

• PDF: Prob y୧ ൌ y|β, βଵ, βଶ ൌ ஜ
౯∗ୣ୶୮ ିஜ

୷!

!ݕ is factorial of ݕ

The dots indicate that only 
integer values are observed.

Distributions with a small 
expected value (mean or ߣ) are 
predicted to have a lot of 0’s.

Once ߣ  6 or so, the shape of 
the distribution is close to a that 
of a normal distribution.ݕ
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3 potential problems for Poisson…
• The standard Poisson distribution is rarely sufficient, though

• Problem #1: When mean ≠ variance
 If variance < mean, this leads to “under-dispersion” (not that likely)
 If variance > mean, this leads to “over-dispersion” (happens frequently)

• Problem #2: When there are no 0 values
 Some 0 values are expected from count models, but in some contexts 
y୧  0 always (but subtracting 1 won’t fix it; need to adjust the model)

• Problem #3: When there are too many 0 values (stay tuned)
 Some 0 values are expected from the Poisson and Negative Binomial models 

already, but many times there are even more 0 values observed than that
 To fix it, there are two main options, depending on what you do to the 0’s

• Each of these problems requires a model adjustment to fix it…
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Problem #1: Variance > mean = over-dispersion
• To fix it, we must add another parameter that allows the variance to 

exceed the mean… becomes a Negative Binomial distribution
 Says residuals are a mixture of Poisson and gamma distributions, 

such that ߣ itself is a random variable with a gamma distribution
 So expected mean is still given by ߣ, but the variance will differ from Poisson

• Model: Log y୧ ൌ Logሺμ୧ሻ ൌ β  βଵX୧  βଶZ୧  e୧ୋ

• Negative Binomial PDF with a new ݇ dispersion parameter is now:

 Prob y୧ ൌ y|β, βଵ, βଶ ൌ
 ୷ାభೖ

 ୷ାଵ ∗ భ
ೖ
∗ ஜ ౯

ଵାஜ
౯శభೖ

  is dispersion, such that Var y୧ ൌ μ୧  μ୧ଶ

 Can test whether ݇  0 via −2LL test, although LL for ݇ ൌ 0	is undefined

• An alternative model with the same idea is the generalized Poisson:
 Mean: ఒ

ଵି
, Variance: ఓ

ଵି మ, that way LL is defined for ݇ ൌ 0

 Is in SAS FMM (and in GLIMMIX through user-defined functions)

So ≈ Poisson if ݇ ൌ 0

DIST = NEGBIN in SAS 
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Negative Binomial (NB) = “Stretchy” Poisson…

• Because its ݇ dispersion parameter is fixed to 0, the Poisson model is 
nested within the Negative Binomial model—to test improvement in fit:

• Is െ2 ௦௦ܮܮ െ ேܮܮ  3.84 for ݂݀ ൌ 1? Then  ൏ .05, keep NB

Mean ൌ λ
Dispersion	ൌ	k

Var y୧ ൌ λ  ݇λଶ

A Negative Binomial 
model can be useful 
for count residuals 
with extra skewness, 
but otherwise follow 
a Poisson distribution.
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Problem #2: There are no 0 values
• “Zero-Altered” or “Zero-Truncated” Poisson or Negative 

Binomial: ZAP/ZANB or ZTP/ZTNB (used in hurdle models)
 Is usual count distribution, just not allowing any 0 values

 Poisson version is readily available within SAS PROC FMM using 
DIST=TRUNCPOISSON (next version should have TRUNCNEGBIN, too)

 Could be fitted in SAS NLMIXED or Mplus, too

• Poisson PDF was:  Prob y୧ ൌ y|μ୧	 ൌ
ஜ
౯∗ୣ୶୮ ିஜ

୷!

• Zero-Truncated Poisson PDF is: 

 Prob y୧ ൌ y|μ୧,y୧  0 ൌ ஜ
౯∗ୣ୶୮ ିஜ

୷! ଵିୣ୶୮ ିஜ

 Prob y୧ ൌ 0 ൌ exp െμ୧ , so Prob y୧  0 ൌ 1 െ exp െμ୧
 Divides by probability of non-0 outcomes so probability still sums to 1

PSYC 930 10



Software for Discrete Outcomes
• There are many choices for modeling not-normal discrete outcomes 

(that include integer values only); most use either an identity or log link

• Single-level, univariate generalized models in SAS:
 GENMOD: DIST= (and default link): Binomial (Logit), Poisson (Log), Zero-Inflated 

Poisson (Log), Negative Binomial (Log), Zero-Inflated Negative Binomial (Log)

 FMM: DIST= (and default link): Binomial (Logit), Poisson (Log), Generalized 
Poisson (Log), Truncated Poisson (Log), Negative Binomial (Log), Uniform

• Multilevel, multivariate generalized models in SAS through GLIMMIX:
 Binomial (Logit), Poisson (Log), Negative Binomial (Log)

 BYOBS, which allows multivariate models by which you specify DV-specific link 
functions and distributions estimated simultaneously

 User-defined variance functions for special cases (e.g., generalized Poisson)

• NLMIXED can also be used to fit any user-defined model
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Generalized Models: Part 2 
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• Topics:
 Models for skewed discrete outcomes
 Models for skewed continuous outcomes
 Models for zero-inflated discrete or continuous outcomes
 Complications for generalized multilevel models

 Multivariate or multilevel data



Log-Normal Distribution (Link=Identity)

• e୧~LogNormal 0, σୣଶ  log of residuals is normal
 Is same as log-transforming your outcome in this case…
 The log link keeps the predicted values positive, but slopes then 

have an exponential (not linear) relation with original outcome
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Log-Normal Distribution (Link=Identity)

• GLIMMIX parameterization gives ߤ (= intercept) and ݈݁ܽܿݏ = 
(variance) to convert back into original data as follows:
 Mean Y ൌ exp ߤ ∗ exp	ሺ݈݁ܽܿݏሻ

 Variance Y ൌ exp ߤ2 ∗ exp ݈݁ܽܿݏ ∗ ሾexp ݈݁ܽܿݏ െ 1ሿ
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Gamma Response Distribution

• GLIMMIX parameterization with LINK=LOG gives ߤ (= intercept) 
and ݈݁ܽܿݏ = (dispersion) to convert into original data as follows:
 Mean Y ൌ exp ߤ ൎ ሺshape*scaleሻ
 Variance Y ൌ exp ߤ ଶ ∗ ݊݅ݏݎ݁ݏ݅݀ ൎ shape ∗ scaleଶ
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Software for Continuous Outcomes
• There are many choices for modeling not-normal continuous outcomes 

(that can include non-integer values); most use either an identity or log link

• Single-level, univariate generalized models in SAS:
 GENMOD: DIST= (and default link): Gamma (Inverse), Geometric (Log), Inverse 

Gaussian (Inverse2), Normal (Identity) 

 FMM: DIST= (and default link): Beta (Logit), Betabinomial (Logit), Exponential 
(Log), Gamma (Log), Normal (Identity), Geometric (Log), Inverse Gaussian 
(Inverse2), LogNormal (Identity), TCentral (Identity), Weibull (Log) 

• Multilevel or multivariate generalized models in SAS through GLIMMIX:
 Beta (Logit), Exponential (Log), Gamma (Log), Geometric (Log), Inverse Gaussian 

(Inverse2), Normal (Identity), LogNormal (Identity), TCentral (Identity) 

 BYOBS, which allows multivariate models by which you specify DV-specific link 
functions and distributions estimated simultaneously (e.g., two-part)

• NLMIXED can also be used to fit any user-defined model
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 Models for skewed discrete outcomes
 Models for skewed continuous outcomes
 Models for zero-inflated discrete or continuous 

outcomes
 Complications for generalized multilevel models

 Multivariate or multilevel data



Modeling Not-Normal Outcomes
• Previously we examined models for skewed distributions

 Discrete: Poisson, Generalized Poisson, Negative Binomial (NB)

 Continuous: Log-Normal, Gamma (also Beta from Part 1)

• Now we will see additions to these models when the outcome 
also has a pile of 0’s: Model becomes If 0 and How Much
 These models will differ in how they define the “If 0” part

 Discrete: Zero-Inflated Poisson or NB, Hurdle Poisson or NB

 Continuous: Two-Part (with normal or lognormal for how much)

 Many of these can be estimated directly in Mplus or SAS GLIMMIX, 
but some will need to be programed in SAS GLIMMIX or NLMIXED

 More options for single-level data in SAS PROC FMM 
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Problem #3: Too many 0 values, Option #1
• “Zero-Inflated” Poisson (DIST=ZIP) or Negative Binomial 

(DIST=ZINB); available within SAS PROC GENMOD (and Mplus)
 Distinguishes two kinds of 0 values: expected and inflated

(“structural”) through a mixture of distributions (Bernoulli + Poisson/NB)

 Creates two submodels to predict “if extra 0” and “if not, how much”?
 Does not readily map onto most hypotheses (in my opinion)
 But a ZIP example would look like this… (ZINB would add k dispersion, too)

• Submodel 1: Logit y୧ ൌ extra	0 ൌ 	βଵ  βଵଵX୧  βଶଵZ୧
 Predict being an extra 0 using Link = Logit, Distribution = Bernoulli

 Don’t have to specify predictors for this part, can simply allow an intercept
(but need ZEROMODEL option to include predictors in SAS GENMOD)

• Submodel 2: Log Eሺy୧ሻ ൌ βଶ  βଵଶX୧  βଶଶZ୧
 Predict rest of counts (including 0’s) using Link = Log, Distribution = Poisson 
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Example of Zero-Inflated Outcomes
Zero-inflated distributions 
have extra “structural 
zeros” not expected from 
Poisson or NB (“stretched 
Poisson”) distributions.

This can be tricky to 
estimate and interpret 
because the model 
distinguishes between 
kinds of zeros rather than 
zero or not...

Image borrowed 
from Atkins & 
Gallop, 2007

PSYC 930 20



Problem #3: Too many 0 values, Option #1

• The Zero-Inflated models get put back together as follows:
 ω୧ is the predicted probability of being an extra 0, from:

ω୧ ൌ
					exp Logit y୧ ൌ extra	0
1  exp Logit y୧ ൌ extra	0

 μ୧ is the predicted count for the rest of the distribution, from:
μ୧ ൌ exp Log y୧

 ZIP: Mean	 original	y୧ ൌ 1 െ ω୧ μ୧
 ZIP: Variance original	y୧ ൌ μ୧ 

ன
ଵିன

μ୧ଶ

 ZINB: Mean	 original	y୧ ൌ 1 െ ω୧ μ୧

 ZINB: Variance original	y୧ ൌ μ୧ 
ன

ଵିன
 ୩

ଵିன
μ୧ଶ
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Problem #3: Too many 0 values, Option #2
• “Hurdle” models for Poisson or Negative Binomial

 PH or NBH: Explicitly separates 0 from non-0 values through a mixture of 
distributions (Bernoulli + Zero-Altered Poisson/NB)

 Creates two submodels to predict “if any 0” and “if not 0, how much”?
 Easier to think about in terms of prediction (in my opinion)

• Submodel 1: Logit y୧ ൌ 0 ൌ 	βଵ  βଵଵX୧  βଶଵZ୧
 Predict being any 0 using Link = Logit, Distribution = Bernoulli
 Don’t have to specify predictors for this part, can simply allow it to exist

• Submodel 2: Log Eሺy୧ሻሻ  0 ൌ βଶ  βଵଶX୧  βଶଶZ୧
 Predict rest of positive counts using Link = Log, Distribution = ZAP or ZANB 

• These models are not readily available in SAS, but NBH is in Mplus
 Could be fit in SAS NLMIXED (as could ZIP/ZINB)
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Two-Part Models for Continuous Outcomes
• A two-part model is an analog to hurdle models for zero-inflated count 

outcomes (and could be used with count outcomes, too)
 Explicitly separates 0 from non-0 values through a mixture of distributions 

(Bernoulli + Normal or LogNormal)
 Creates two submodels to predict “if not 0” and “if not 0, how much”?

 Easier to think about in terms of prediction (in my opinion)

• Submodel 1: Logit y୧  0 ൌ 	βଵ  βଵଵX୧  βଶଵZ୧
 Predict being any 0 using Link = Logit, Distribution = Bernoulli
 Usually do specify predictors for this part

• Submodel 2: y୧|y୧  0 ൌ βଶ  βଵଵX୧  βଶଵZ୧
 Predict rest of positive amount using Link = Identity, Distribution = Normal 

or Log-Normal (often rest of distribution is skewed, so log works better)

• Two-part is not readily available in SAS, but is in Mplus
 Can be estimated as a multivariate model in SAS GLIMMIX or NLMIXED
 Is related to “tobit” models for censored outcomes (for floor/ceiling effects)
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Pile of 0’s Taxonomy
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• What kind of amount do you want to predict?
 Discrete: Count  Poisson, Stretchy Count  Negative Binomial
 Continuous: Normal, Log-Normal, Gamma

• What kind of If 0 do you want to predict?
 Discrete: Extra 0 beyond predicted by amount?
 Zero-inflated Poisson or Zero-inflated Negative Binomial

 Discrete: Any 0 at all?
 Hurdle Poisson or Hurdle Negative Binomial

 Continuous: Any 0 at all?
 Two-Part with Continuous Amount (see above)

 Note: Given the same amount distribution, these alternative ways 
of predicting 0 will result in the same empty model fit



Comparing Generalized Models
• Whether or not a dispersion parameter is needed (to distinguish 

Poisson and NB) can be answered via a likelihood ratio test
 For the most fair comparison, keep the linear predictor model the same

• Whether or not a zero-inflation model is needed should, in theory, 
also be answerable via a likelihood ratio test…
 But people disagree about this 
 Problem? Zero-inflation probability can’t be negative, so is bounded at 0
 Other tests have been proposed (e.g., Vuong test—see SAS macro online)
 Can always check AIC and BIC (smaller is better)

• In general, models with the same distribution and different links can 
be compared via AIC and BIC, but one cannot use AIC and BIC to 
compare across alternative distributions (e.g., normal or not?)
 Log-Likelihoods are not on the same scale due to using different PDFs
 You can compute predicted values under different models to see how 

reasonably they approximate the data for some unofficial guidance
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Multivariate Data in PROC GLIMMIX
• Multivariate models can be fitted in PROC GLIMMIX using 

stacked data, same as in MIXED… first, the bad news:
 There is no R matrix in true ML, only G, and V can’t be printed, either, 

which sometimes makes it hard to tell what structure is being predicted

 There is no easy way to allow different scale factors given the same link 
and distribution across multivariate outcomes (as far as I know)

 This means that a random intercept can be included to create constant 
covariance across outcomes, but that any differential variance (scale) or 
covariance must be included via RANDOM statement as well (to go in G)

• Now, the good news: 
 It allows different links and distributions across outcomes using 

LINK=BYOBS and DIST=BYOBS (Save new variables called “link” and 
“dist” to your data to tell GLIMMIX what to use per outcome)

 It will do −2∆LL tests for you using the COVTEST option! (not in MIXED)
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From Single-Level to Multilevel…
• Multilevel generalized models have the same 3 parts as 

single-level generalized models:
 Link function transforms bounded DV into unbounded conditional mean

 Linear model that directly predicts link-transformed conditional mean

 Alternative distribution of level-1 residuals used (e.g., Bernoulli)

• But in adding random effects (i.e., additional piles of variance) 
to address dependency in longitudinal or multivariate data:
 Piles of variance are ADDED TO, not EXTRACTED FROM, the original 

residual variance pile when it is fixed to a known value (e.g., 3.29), 
which causes the model coefficients to change scale across models

 ML estimation is way more difficult because normal random effects + 
not-normal residuals does not have a known distribution like MVN

 No such thing as REML for generalized multilevel models
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Empty Multilevel Model for Binary Outcomes

• Level 1:  Logit(yti) = β0i

• Level 2:            β0i = γ00 + U0i

• Composite: Logit(yti) = γ00 + U0i

• σୣଶ residual variance is not estimated  π2/3 = 3.29
 (Known) residual is in model for actual Y, not prob(Y) or logit(Y) 

• Logistic	ICC ൌ 
ା

ൌ
ૌ܃



ૌ܃

ାો܍

 ൌ
ૌ܃



ૌ܃

ା.ૢ

• Can do −2∆LL test to see if ૌ܃> 0, although the ICC is somewhat 
problematic to interpret due to non-constant residual variance
 Have not seen equivalent ICC formulas for other generalized models besides binary

Note what’s 
NOT in level 1…
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Random Linear Time Model 
for Binary Outcomes

• Level 1:  Logit(yti) = β0i + β1i(timeti)
• Level 2:      β0i = γ00 + U0i

β1i = γ10 + U1i

• Combined:     Logit(yti) = (γ00 + U0i) + (γ10 + U1i)(timeti)

• σୣଶ residual variance is still not estimated  π2/3 = 3.29
• Can test new fixed or random effects with −2∆LL tests 

(or Wald test p-values for fixed effects as usual)
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Random Linear Time Model 
for Ordinal Outcomes ( )

• L1:   Logit(yti1) = β0i1 + β1i1(timeti) 

Logit(yti2) = β0i2 + β1i2(timeti)

• L2:    β0i1 = γ001 + U0i1   β1i1 = γ101 + U1i1

β0i2 = γ002 + U0i2 β1i2 = γ102 + U1i2

• Assumes proportional odds 
γ001 ≠ γ002 and γ101 = γ102 and U0i1 = U0i2 and U1i1 = U1i2 
 Testable via nominal model (all unequal) or using NLMIXED to write a 

custom model in which some can be constrained
 σୣଶ residual variance is still not estimated  π2/3 = 3.29
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New Interpretation of Fixed Effects
• In general linear mixed models, the fixed effects are 

interpreted as the “average” effect for the sample
 γ00 is “sample average” intercept 

 U0i is “individual deviation from sample average”

• What “average” means in generalized linear mixed models is 
different, because the natural log is a nonlinear function:
 So the mean of the logs ≠ log of the means

 Therefore, the fixed effects are not the “sample average” effect, they 
are the effect for specifically for Ui = 0
 Fixed effects are conditional on the random effects
 This gets called a “unit-specific” or “subject-specific” model
 This distinction does not exist for normally distributed outcomes 
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Comparing Results across Models
• NEW RULE: Coefficients cannot be compared across models, 

because they are not on the same scale! (see Bauer, 2009)
• e.g., if residual variance = 3.29 in binary models:

 When adding a random intercept variance to an empty model, the 
total variation in the outcome has increased the fixed effects will 
increase in size because they are unstandardized slopes

 Level-1 predictors cannot decrease the residual variance like usual, 
so all other models estimates have to go up to compensate
 If Xti is uncorrelated with other X’s and is a pure level-1 variable (ICC ≈ 0), 

then fixed and SD(U0i) will increase by same factor

 Random effects variances can decrease, though, so level-2 effects 
should be on the same scale across models if level-1 is the same

0

2
U

mixed fixed

+3.29
γ  ( )

3.29
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A Little Bit about Estimation
• Goal: End up with maximum likelihood estimates for all model 

parameters (because they are consistent, efficient)
 When we have a V matrix based on multivariate normally

distributed eti residuals at level-1 and multivariate normally 
distributed Ui terms at level 2, ML is easy

 When we have a V matrix based on multivariate Bernoulli
distributed eti residuals at level-1 and multivariate normally 
distributed Ui terms at level 2, ML is much harder
 Same with any other kind model for “not normal” level 1 residual
 ML does not assume normality unless you fit a “normal” model!

• 3 main families of estimation approaches:
 Quasi-Likelihood methods (“marginal/penalized quasi ML”)

 Numerical Integration (“adaptive Gaussian quadrature”)

 Also Bayesian methods (MCMC, newly available in SAS or Mplus)
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2 Main Types of Estimation
• Quasi-Likelihood methods  older methods

 “Marginal QL”  approximation around fixed part of model
 “Penalized QL”  approximation around fixed + random parts
 These both underestimate variances (MQL more so than PQL)
 2nd-order PQL is supposed to be better than 1st-order MQL
 QL methods DO NOT PERMIT MODEL −2∆LL TESTS
 HLM program adds Laplace approximation to QL, which then does permit 
−2∆LL tests (also in SAS GLIMMIX and STATA xtmelogit)

• ML via Numerical Integration  gold standard
 Much better estimates and −2∆LL tests, but can take for-freaking-ever (can 

use PQL methods to get good start values)
 Will blow up with many random effects (which make the model 

exponentially more complex, especially in these models)
 Relies on assumptions of local independence, like usual  all level-1 

dependency has been modeled; level-2 units are independent
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ML via Numerical Integration
• Step 1: Select starting values for all fixed effects
• Step 2: Compute the likelihood of each observation given by the 

current parameter values using chosen distribution of residuals
 Model gives link-predicted outcome given parameter estimates, but the U’s 

themselves are not parameters—their variance and covariance are instead

 But so long as we can assume the U’s are MVN, we can still proceed

 Computing the likelihood for each set of possible parameters requires removing
the individual U values from the model equation—by integrating across 
possible U values for each Level-2 unit

 Integration is accomplished by “Gaussian Quadrature”  summing up rectangles 
that approximate the integral (area under the curve) for each Level-2 unit

• Step 3: Decide if you have the right answers, which occurs when the 
log-likelihood changes very little across iterations (i.e., it converges)

• Step 4: If you aren’t converged, choose new parameters values
 Newton-Rhapson or Fisher Scoring (calculus), EM algorithm (U’s =missing data)
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ML via Numerical Integration
• More on Step 2: Divide the U distribution into rectangles

 Called “Gaussian Quadrature” (# rectangles = # “quadrature points”)

 Start by dividing the whole distribution into rectangles, then repeat, 
taking the most likely section for each level-2 unit and rectangling that
 This is “adaptive quadrature” and is computationally more demanding, but 

gives more accurate results with fewer rectangles (SAS will pick how many)

The likelihood of each level-2 unit’s 
outcomes at each U rectangle is then 
weighted by that rectangle’s 
probability of being observed (from 
the multivariate normal distribution). 
The weighted likelihoods are then 
summed across all rectangles… 

 ta da! “numerical integration”
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Example of Numeric Integration: Binary DV, 
Fixed Linear Time, Random Intercept Model 
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1. Start with values for fixed effects: intercept: γ00 = 0.5, time: γ10 = 2.0,

2. Compute likelihood for real data based on fixed effects and plausible U0i
(-2,0,2) using model: Logit(yti=1) = γ00 + γ10(timeti) + U0i

• Here for one person at two occasions with yti=1 at both occasions
IF yti=1 IF yti=0 Likelihood Theta Theta  Product

U0i = ‐2  Logit(yti) Prob  1‐Prob if both y=1 prob  width per Theta
Time 0  0.5 + 1.5(0) ‐ 2 ‐1.5  0.18  0.82     0.091213 0.05  2  0.00912
Time 1  0.5 + 1.5(1) ‐ 2 0.0  0.50  0.50 

U0i =  0  Logit(yti) Prob  1‐Prob
Time 0  0.5 + 1.5(0) + 0 0.5  0.62  0.38  0.54826  0.40  2  0.43861
Time 1  0.5 + 1.5(1) + 0 2.0  0.88  0.12 

U0i = 2  Logit(yti) Prob  1‐Prob
Time 0  0.5 + 1.5(0) + 2 2.5  0.92  0.08  0.90752  0.05  2  0.09075
Time 1  0.5 + 1.5(1) + 2 4.0  0.98  0.02                

Overall Likelihood (Sum of Products over All Thetas): 0.53848

(do this for each occasion, then multiply this whole thing over all people)
(repeat with new values of fixed effects until find highest overall likelihood) 
 



Summary: Generalized Multilevel Models
• Analyze link-transformed conditional mean (e.g., via logit, log, log-log…)

 Linear relationship between X’s and transformed conditional mean of Y

 Nonlinear relationship between X’s and original Y
 Original eti residuals are assumed to follow some non-normal distribution

• In models for binary or categorical data, level-1 residual variance is set
 So it can’t go down after adding level-1 predictors, which means that the scale of 

everything else has to go UP to compensate

 Scale of model will also be different after adding random effects for the same 
reason—the total variation in the model is now bigger

 Fixed effects may not be comparable across models as a result

• Estimation is trickier and takes longer
 Numerical integration is best but may blow up in complex models

 Start values are often essential (can get those with pseudo-likelihood estimators)
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Generalized Models Part 2: Summary
• There are many options for “amount” variables whose 

residuals may not be normally distributed
 Discrete: Poisson, Negative Binomial
 Continuous: Lognormal, Gamma, Beta
 Too many 0’s: Zero-inflated or hurdle for discrete; two-part

• Multivariate and multilevel versions of all the generalized 
models we covered can be estimated…
 But it’s harder to do and takes longer due to numeric integration (trying 

on random effects at each iteration) 
 But there are fewer ready-made options for modeling differential 

variance/covariance across DVs (no easy R matrix structures in true ML)

• Program documentation will always be your friend to 
determine exactly what a given model is doing!

PSYC 930 40


