Example 2a: Reviewing Main Effects in General Linear Models (as estimated using restricted maximum likelihood in SAS MIXED and STATA MIXED)

The models for this example come from Hoffman (2015) chapter 2. We will be examining the extent to which cognition (as measured by an information test outcome) can be predicted from age (centered at 85 years) grip strength (centered at 9 pounds), sex (with men as the reference group) and subsequent dementia status (none = 1, future = 2, and current = 3) in a sample of 550 older adults.

SAS Syntax and Output for Data Manipulation and Data Description:

```
* Defining global variable for file location to be replaced in code below;
* \\Client\ precedes actual path when using UIowa Virtual Desktop
%LET filesave=\\Client\C:\Dropbox\19_PSQF7375_Clustered\PSQF7375_Clustered_Example2;
* Location for SAS files for these models (uses macro variable filesave);
LIBNAME filesave "&filesave.";
* Import chapter 2 example data into work library;
DATA work.Chapter2; SET filesave.SAS_Chapter2;
* Centering continuous predictors;
age85 = age - 85;
grip9 = grip - 9;
* Creating manual contrasts for dementia groups (to be treated as continuous);
    IF demgroup=1 THEN DO; demNF=0; demNC=0; END; * None group is reference;
ELSE IF demgroup=2 THEN DO; demNF=1; demNC=0; END; * Future group difference;
ELSE IF demgroup=3 THEN DO; demNF=0; demNC=1; END; * Current group difference;
* Labeling all variables - note semi-colon is only at the end of ALL labels;
LABEL
age85=
       "age85: Age in Years (0=85)"
grip9= "grip9: Grip Strength in Pounds (0=9)"
       "sexMW: Sex (0=Men, 1=Women)"
demNF= "demNF: Dementia Contrast for None=0 vs Future=1"
demNC= "demNC: Dementia Contrast for None=0 vs Current=1"
cognition= "Cognition Outcome"
demgroup= "Dementia Group 1N 2F 3C";
RUN:
* Creating value labels to use as needed (not stored in data);
PROC FORMAT; VALUE FDemGroup 1="1None" 2="2Future" 3="3Current";
            VALUE FSex 0="0Men" 1="1Women"; RUN;
TITLE1 "Chapter 2: Descriptive Statistics for Example Variables";
PROC MEANS NOLABEL NDEC=2 NONOBS DATA=work.Chapter2; VAR age grip cognition; RUN;
PROC FREQ DATA=work.Chapter2;
    TABLE sexMW*demgroup; RUN;
PROC CORR DATA=work.Chapter2; VAR age grip sexMW cognition; RUN;
TITLE1:
STATA Syntax and Output for Data Manipulation and Data Description:
* Defining global variable for file location to be replaced in code below
global filesave "C:\Dropbox\19_PSQF7375_Clustered\PSQF7375_Clustered_Example2"
* Import chapter 2 data into temporary file and center predictors
use "$filesave\STATA_Chapter2.dta", clear
* Centering continuous predictors
gen age85 = age - 85
gen grip9 = grip - 9
* Creating manual contrasts for dementia groups
gen demnf=0
gen demnc=0
* Demgroup = none
replace demnf=0 if demgroup==1
replace demnc=0 if demgroup==1
```

```
* Demgroup = future
replace demnf=1 if demgroup==2
replace demnc=0 if demgroup==2
* Demgroup = current
replace demnf=0 if demgroup==3
replace demnc=1 if demgroup==3
* Adding value labels
label define fdemgoup 1 "1None" 2 "2Future" 3 "3Current"
label values demgroup fdemgroup
label define fsex 0 "OMen" 1 "1Women"
label values sexmw fsex
* Labeling all variables
label variable age85 "age85: Age in Years (0=85)"
label variable grip9 "grip9: Grip Strength in Pounds (0=9)"
label variable sexmw "sexmw: Sex (0=Men, 1=Women)"
label variable demnf "demnf: Dementia Contrast for None=0 vs Future=1"
label variable demnc "demnc: Dementia Contrast for None=0 vs Current=1"
label variable cognition "Cognition Outcome"
label variable demgroup "Dementia Group 1N 2F 3C"
display as result "Chapter 2: Descriptive Statistics for Example Variables"
format age grip cognition %4.2f
summarize age grip cognition, format
tabulate sexmw demgroup, cell
```

SAS Old-School Listing Output (which I still use because it's easier to paste and annotate):

Variable	N	Mean	Std Dev	Minimum	Maximum
age	550	84.93	3.43	80.02	96.97
grip	550	9.11	2.98	0.00	19.00
cognition	550	24.82	10.99	0.00	44.00

Frequency				
Percent	1None	2Future	3Current	Total -
OMen	168	40	19	227
	30.55	7.27	3.45	41.27
1Women	231	69	23	323
	42.00	12.55	4.18	58.73
Total	399	109	42	550
	72.55	19.82	7.64	100.00

STATA Old-School Listing Output (which I still use because it's easier to paste and annotate):

Variable	•	Mean	Std. Dev.		Max
age		84.93	3.43	80.02	96.97
grip	550	9.11	2.98	0.00	19.00
cognition	550	24.82	10.99	0.00	44.00

sexmw: Sex (0=Men, 1=Women)	1None	a Group 1N 2Future		Total
OMen	168	40	19	227
	30.55	7.27	3.45	41.27
1Women	231	69	23	323
	42.00	12.55	4.18	58.73
Total	399	109	42	550
	72.55	19.82	7.64	100.00

SAS MIXED Syntax and Output for Empty Means Model in Equation 2.3

Cognition_i = $\beta_0 + e_i$

TITLE1 'Eq 2.3: Empty Means Model';

PROC MIXED DATA=work.Chapter2 COVTEST NOCLPRINT NAMELEN=100 IMETHOD=REML;

MODEL cognition = / SOLUTION DDFM=BW;

RUN; TITLE1;

METHOD = REML → Least Squares (= GLM) MODEL y = fixed effects of predictors Options after /; add "CL" for fixed effect Cis (not used here to save space for annotation) DDFM indicates denominator DF method (doesn't matter here, but it will later)

Number of Observations

Number	of	Observations	Read	550
Number	of	Observations	Used	550
Number	of	Observations	Not Used	0

Covariance Parameter Estimates

		Standard	Z	
Cov Parm	Estimate	Error	Value	Pr > Z
Residual	120.76	7.2887	16.57	<.0001 is σ_e^2

This table tells you how many cases were removed due to incomplete data—make sure you pay attention to this if you are doing any model comparisons (which will need to be based on the exact same cases to be valid).

This table will list all estimated parameters within the model for the variance. Right now all we have is residual variance, the variance of the e_i residuals. Because this is an empty means model with no predictors, this is ALL the variance to be predicted in cognition.

-2 Res Log Likelihood 4196.1 AIC (Smaller is Better) 4198.1 AICC (Smaller is Better) 4198.1 BIC (Smaller is Better) 4202.4

Fit Statistics

This first "Fit Statistics" table will index relative model fit in terms of **-2*LL**, in which **smaller is better** (stay tuned).

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|Intercept 24.8218 0.4686 549 52.97 <.0001 is B0

Interpret each fixed effect:

Intercept $\beta_0 =$

This "Solution for Fixed Effects" table will list all estimated parameters in the model for the means.

It is not printed by default and must be requested by "SOLUTION" after the / on the MODEL line above.

STATA MIXED Syntax and Output for Empty Means Model in Equation 2.3

Cognition_i = $\beta_0 + e_i$

display as result "Eq 2.3: Empty Means Model"
mixed cognition , ///

variance reml dfmethod(residual)

MODEL y fixed effects of predictors

/// used to continue single command across lines; second line are options:

- METHOD = REML \rightarrow Least Squares (= GLM)
- Stata used to provide SD instead of variances by default, so "variance" ensures this version
- dfmethod invokes denominator DF (\rightarrow t and F)

Mixed-effects REML regression	Number of obs =	550	
DF method: Residual	DF: min =	549.00	F (0,549) is where
	avg =	549.00	multivariate Wald test for
	max =	549.00	model R ² will go once we
	F(0, 549.00) =		have model predictors.
Log restricted-likelihood = -2098.0488	Prob > F =		1

Note that STATA provides log-likelihood (**LL**), in which **bigger is better**, whereas SAS provides **-2*LL** instead (in which **smaller is better**). The latter is more useful to simplify the math in variance model comparisons (stay tuned).

cognition 	24.82182		52.97	0.000	23.9014	Interval] 25.74223	Fixed effects are listed first, then the intercept (Beta0) which is labeled as "_cons" instead.
Random-effects		+					This table will list all estimated parameters in the model for the variance

SAS MIXED Syntax and Output for Age, Grip, and Sex (0=M, 1=W) Model in Equation 2.7

 $\overline{\text{Cognition}_{i} = \beta_0 + \beta_1 (\text{Age}_{i} - 85) + \beta_2 (\text{Grip}_{i} - 9) + \beta_3 (\text{SexMW}_{i}) + e_{i}}$

```
TITLE1 'Eq 2.7: Age + Grip + Sex (0=M 1=W, as continuous predictor)';

PROC MIXED DATA=work.Chapter2 COVTEST NOCLPRINT NAMELEN=100 METHOD=REML;

MODEL cognition = age85 grip9 sexMW
/ SOLUTION DDFM=BW

OUTPM requests a new
```

OUTPM=PredAgeGripSex;
CONTRAST "Model R2 F-Test" age85 1, grip9 1, sexMW 1;
RUN; TITLE1;

PROC CORR NOSIMPLE DATA=work.PredAgeGripSex;
VAR cognition; WITH pred; RUN;

Covariance Parameter Estimates
Standard

			_		Squa
Cov Parm	Estimate	Error	Value	Pr > Z	- qua
Residual	109.38	6.6200	16.52	<.0001 is	$\text{new } \sigma_e^2$

Solution for Fixed Effects

		Standard				
Effect	Estimate	Error	DF	t Value	Pr > t	
Intercept	26.9594	0.7389	546	36.49	<.0001	is BO
age85	-0.4338	0.1325	546	-3.27	0.0011	is B1
grip9	0.5460	0.1663	546	3.28	0.0011	is B2
sexMW	-3.7988	0.9904	546	-3.84	0.0001	is B3

OUTPM requests a new dataset (after =) that contains predicted outcomes from the fixed effects. The new column is called "pred" by default.

CONTRAST gives a multivariate Wald test for the significance of the model for the means (reduction in error variance by adding three fixed effects).

The CORR command requests the correlation between the predicted and original outcome. Squaring that correlation creates model R^2 .

Contrasts Num Den

Label DF DF F Value Pr > F Model R2 F-Test 3 546 20.04 <.0001

Pearson Correlation Coefficients, N = 550 Prob > |r| under HO: Rho=0

cognition

Pred $0.31491 \rightarrow \text{squared} = .0992$

Predicted Mean <.0001

FYI: In practice, the R^2 calculated as a reduction in residual variance will differ slightly from the R^2 calculated as the square of the correlation between the predicted and original outcome—the latter exactly matches the GLM output for model R^2 .

We will use both of these techniques for different reasons in the multilevel models to come.

Calculate model R² as proportion reduction in residual (error) variance (PRE)

= (empty σ_e^2 – current σ_e^2) / (empty σ_e^2) = (120.76 – 109.38) / (120.76) = **.0942**

The df=3 CONTRAST above says that this R^2 is significantly > 0, F(3,546) = 20.04, p < .0001.

STATA MIXED Syntax and Output for Age, Grip, and Sex (0=M, 1=W) Model in Equation 2.7

$$Cognition_i = \beta_0 + \beta_1 (Age_i - 85) + \beta_2 (Grip_i - 9) + \beta_3 (SexMW_i) + e_i$$

display as result "Eq 2.7: Age + Grip + Sex (0=M 1=W, as continuous predictor)" mixed cognition c.age85 c.grip9 c.sexmw, ///

variance reml dfmethod(residual),

predict predagegripsex, xb

corr cognition predagegripsex

display as result r(rho)^2

PREDICT creates a new column called "predagegripsex" in the original data that contains predicted outcomes from the fixed effects.

The CORR command requests the correlation between the predicted and original outcome. Squaring that correlation creates model R^2 .

Mixed-effects REML regression		Number	OΤ	obs	=	550
DF method: Residual		DF:		r	min =	546.00
				á	avg =	546.00
				r	nax =	546.00
		F(3,	546	.00)	=	20.04
Log restricted-likelihood = -2070.5586		Prob >	F		=	0.0000
cognition Coef. Std. Err.	t	P> t		[95%	Conf.	Interval]

F(3,546) = 20.04 is the multivariate Wald test for the model R^2 given three predictors in the model for the means.

cognition	Coef.			, ,		Interval]	
age85	4337719	.1324638	-3.27	0.001	6939729	1735709	is B1
grip9	.5460019	.1662766	3.28	0.001	.2193818	.8726221	is B2
sexmw	-3.79878	.9903591	-3.84	0.000	-5.744161	-1.853399	is B3
_cons	26.95943	.7388729	36.49	0.000	25.50805	28.41081	is BO

Interpret each fixed effect:

Intercept $\beta_0 =$

Main effect of Age β_1 =

Main effect of Grip Strength β_2 =

Main effect of Sex β_3 =

SAS MIXED Syntax and Output for the Dementia Group Model in Equation 2.8

$$Cognition_{i} = \beta_{0} + \beta_{1} \left(Age_{i} - 85\right) + \beta_{2} \left(Grip_{i} - 9\right) + \beta_{3} \left(SexMW_{i}\right) + \beta_{4} \left(DemNF_{i}\right) + \beta_{5} \left(DemNC_{i}\right) + e_{i}$$

We can use the model equation to calculate the **dementia group means** for predicted cognition:

 $\begin{array}{ll} \text{Cognition for None} = & \beta_0 \\ \text{Cognition for Future} = & \beta_0 + \beta_4 \\ \text{Cognition for Current} = & \beta_0 + \beta_5 \end{array}$

Cognition for *Ever* Dementia (Mean of Future and Current) = $\beta_0 + (\beta_4 + \beta_5)/2$

We can determine the **differences between the dementia group means** as follows:

```
None vs. Future = Future – None = (\beta_0 + \beta_4) - (\beta_0) = \beta_4

None vs. Current = Current – None = (\beta_0 + \beta_5) - (\beta_0) = \beta_5

Future vs. Current = Current – Future = (\beta_0 + \beta_5) - (\beta_0 + \beta_4) = \beta_5 - \beta_4 = -\beta_4 + \beta_5

None vs. Ever = Ever – None = \beta_0 + (\beta_4 + \beta_5)/2 - (\beta_0) = (\beta_4 + \beta_5)/2
```

These values are then requested via the SAS ESTIMATE statements below...

The first CONTRAST below includes all fixed effects, and thus tests the full model R². The second CONTRAST below includes only the <u>new</u> fixed effects, and thus tests the <u>increment</u> to the model R2 from adding dementia group. In this case this is also an "omnibus" ANOVA test for group.

```
CONTRAST "Model R2 F-Test df=5" age85 1, grip9 1, sexmw 1, demNF 1, demNC 1; CONTRAST "Omnibus F-Test for Dementia Group df=2" demNF 1, demNC 1;
```

The first 4 ESTIMATEs request predicted outcomes, so they must include the intercept. The last 4 ESTIMATES request slopes for group differences, so they do NOT include the intercept.

```
* Request conditional (adjusted) group means (hold age=85, grip=9, men because not there);

ESTIMATE "Intercept for None Group" intercept 1 demNF 0 demNC 0; * Given as B0;

ESTIMATE "Intercept for Future Group" intercept 1 demNF 1 demNC 0; * Not given (B0+B4);

ESTIMATE "Intercept for Current Group" intercept 1 demNF 0 demNC 1; * Not given (B0+B5);

ESTIMATE "Intercept for Ever Group" intercept 1 demNF .5 demNC .5; * B0 + (B4+B5)/2;
```

```
* Request group differences (unconditional because there are no interactions);
  ESTIMATE "None vs. Future Group" demNF 1 demNC 0; * Given as B4;
  ESTIMATE "None vs. Current Group" demNF 0 demNC 1; * Given as B5;
  ESTIMATE "Future vs. Current Group" demNF -1 demNC 1; * Not given (B5-B4);
 ESTIMATE "None vs. Ever Group" demNF .5 demNC .5; * Not given (B5+B4)/2;
RUN; TITLE1; TITLE2; TITLE3;
PROC CORR NOSIMPLE DATA=work.PredAgeGripSexDem;
    VAR cognition; WITH pred; RUN;
          Covariance Parameter Estimates
                     Standard
Cov Parm
                                         Pr > Z
           Estimate
                       Error
                                Value
                                         <.0001 is new \sigma_e^2
                       5.3401 16.49
Residual
           88.0709
                Solution for Fixed Effects
                     Standard
Effect
                      Error
                                DF t Value
          Estimate
                                                Pr > |t|
Intercept
         29.2643
                     0.6985 544 41.90
                                              <.0001 is B0
age85
           -0.4057
                     0.1189 544
                                       -3.41
                                                 0.0007 is B1
                     0.1498 544
grip9
           0.6042
                                       4.03
                                                 <.0001 is B2
                     0.8914 544
sexMW
           -3.6574
                                       -4.10
                                                <.0001 is B3
                      1.0191 544
1.5228 544
demNF
           -5.7220
                                       -5.61
                                                 <.0001 is B4
                                    -10.82
```

<.0001 is B5

Interpret each fixed effect below:

-16.4798

Intercept $\beta_0 =$

demNC

Pred

Main effect of Age β_1 =

Main effect of Grip Strength β_2 =

Main effect of Sex β_3 =

Main effect of DemNF β_4 =

Main effect of DemNC β_5 =

•					
	Estima	tes			
		Standard			
Label	Estimate	Error	DF	t Value	Pr > t
Intercept for None Group	29.2643	0.6985	544	41.90	<.0001 B0
Intercept for Future Group	23.5424	1.0785	544	21.83	<.0001 B0+B4
Intercept for Current Group	12.7845	1.5302	544	8.35	<.0001 B0+B5
Intercept for Ever Group	18.1634	1.0115	544	17.96	<.0001 B0+(B4+B5)/2
None vs. Future Group	-5.7220	1.0191	544	-5.61	<.0001 B4
None vs. Current Group	-16.4798	1.5228	544	-10.82	<.0001 B5
Future vs. Current Group	-10.7578	1.7080	544	-6.30	<.0001 B5-B4
None vs. Ever Group	-11.1009	0.9744	544	-11.39	<.0001 (B4+B5)/2
	Contras	ts			
		Num	Den		
Label		DF	DF	F Value	Pr > F
Model R2 F-Test with df=5		5	544	41.75	<.0001
Omnibus F-Test for Dementia G	aroup with df=	2 2	544	67.06	<.0001
Pearson Correlation Coefficie	•				

 $0.52662 \rightarrow \text{squared} = .2774$

Current model \mathbf{R}^2 = (empty $\sigma_{\mathbf{e}}^2$ - current $\sigma_{\mathbf{e}}^2$) / (empty $\sigma_{\mathbf{e}}^2$) = (120.76 - 88.07) / (120.76) = .2707 The df=5 CONTRAST above says that current \mathbf{R}^2 is significantly > 0, F(5,544) = 41.75, p < .0001. Change in model \mathbf{R}^2 = (current \mathbf{R}^2) - (previous \mathbf{R}^2) = .2707 - .0942 = .1765 The df=2 CONTRAST above says that change in \mathbf{R}^2 is significantly > 0, F(2,544) = 67.06, p < .0001.

STATA MIXED Syntax and Output for Dementia Group Model in Equation 2.8

```
Cognition<sub>i</sub> = \beta_0 + \beta_1 (Age_i - 85) + \beta_2 (Grip_i - 9) + \beta_3 (SexMW_i) + \beta_4 (DemNF_i) + \beta_5 (DemNC_i) + e_i
display as result "Eq 2.8: Adding Dementia Group"
display as result "Using Manual Group Contrasts so Reference=None"
mixed cognition c.age85 c.grip9 c.sexmw c.demnf c.demnc, ///
               variance reml dfmethod(residual),
      test (c.demnf=0) (c.demnc=0), small // Omnibus Dementia Group Test - change in R2
      predict predagegripsexdem, xb
      corr cognition predagegripsexdem
                                             The option SMALL requests t-tests instead of z-tests.
      display as result r(rho)^2
 lincom _cons*1 + c.demnf*0 + c.demnc*0, small // Intercept for None Group = B0
 lincom _cons*1 + c.demnf*1 + c.demnc*0, small // Intercept for Future Group = B0+B4
 lincom _cons*1 + c.demnf*0 + c.demnc*1, small // Intercept for Current Group = B0+B5
 lincom _cons*1 + c.demnf*.5 + c.demnc*.5, small // Intercept for Ever Group = B0+(B4+B5)/2
lincom c.demnf*1 + c.demnc*0, small // None vs Future = B4
lincom c.demnf*0 + c.demnc*1, small // None vs Current = B5
lincom c.demnf*-1 + c.demnc*1, small // Future vs Current = B5-B4
 lincom c.demnf*.5 + c.demnc*.5, small // None vs Ever = (B4+B5)/2
                                         Number of obs = 550

DF: min = 544.00

avg = 544.00
Mixed-effects REML regression
DF method: Residual
                                                                      F(5.544) = 41.75 is the
                                                                      multivariate Wald test for
                                                    max = 544.00
                                                                      the model R<sup>2</sup> given five
                                         F(5, 544.00) =
                                                              41.75
Log restricted-likelihood = -2008.1345 Prob > F
                                                                      model predictors.
-----
  cognition | Coef. Std. Err. t > |t| [95% Conf. Interval]
age85 | -.405734 .1188972 -3.41 0.001 -.6392878 -.1721802 is B1
      grip9 | .6042256 .1497757 4.03 0.000 .310016 .8984351 is B2
      sexmw | -3.657374 .8914326 -4.10 0.000 -5.408446 -1.906303 is B3
      demnf | -5.721971 1.019078 -5.61 0.000 -7.723782
                                                            -3.72016 is B4
      cons | 29.26433 .6985079 41.90 0.000 27.89222
                                                            30.63643 is BO
______
 Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
            var(Residual) \mid 88.07088 \quad 5.310874 \quad 78.25335 \quad 99.1201 \text{ is new } \sigma_e^2
______
      * Omnibus Dementia Group Test (change in R2)
     test (c.demnf=0) (c.demnc=0), small
( 1) [cognition]demnf = 0
 ( 2) [cognition]demnc = 0
                            F(2,544) = 67.06 is the multivariate Wald test
                             for the model CHANGE in R<sup>2</sup> given two new
      F(2,544.00) = 67.06
                            model predictors. This is also known as the
        Prob > F = 0.0000
                            "omnibus" main effect of group in ANOVA.
      corr cognition pred (obs=550)
        | cognit~n predag~m
predagegri~m | 0.5266 1.0000 → .2773294 R2 for model
```

Here are the results of the separate LINCOM statements:

```
lincom _cons*1 + c.demnf*0 + c.demnc*0, small // Intercept for None Group = B0
(1) [cognition] cons = 0
 cognition | Coef. Std. Err. t > |t| [95% Conf. Interval]
     (1) | 29.26433 .6985079 41.90 0.000 27.89222 30.63643
______
       lincom cons*1 + c.demnf*1 + c.demnc*0, small // Intercept for Future Group = B0+B4
( 1) [cognition]demnf + [cognition]_cons = 0
 cognition | Coef. Std. Err. t > |t| [95% Conf. Interval]
     (1) | 23.54235   1.07853   21.83   0.000   21.42376   25.66095
     lincom _cons*1 + c.demnf*0 + c.demnc*1, small // Intercept for Current Group = B0+B5
( 1) [cognition]demnc + [cognition]_cons = 0
 cognition | Coef. Std. Err. t P>|t| [95% Conf. Interval]
(1) | 12.78451 1.530193 8.35 0.000 9.778701 15.79032
. lincom _{cons*1} + c.demnf*.5 + c.demnc*.5, small // Intercept for Ever Group = B0+(B4+B5)/2
(1) .5*[cognition]demnf + .5*[cognition]demnc + [cognition]_cons = 0
 cognition | Coef. Std. Err. t P>|t| [95% Conf. Interval]
(1) | 18.16343 1.011474 17.96 0.000 16.17656 20.15031
       lincom c.demnf*1 + c.demnc*0, small // None vs Future = B4
( 1) [cognition]demnf = 0
 cognition | Coef. Std. Err. t > |t| [95% Conf. Interval]
     (1) | -5.721971 1.019078 -5.61 0.000 -7.723782 -3.72016
______
       lincom c.demnf*0 + c.demnc*1, small // None vs Current = B5
( 1) [cognition]demnc = 0
                      ______
 cognition | Coef. Std. Err. t > |t| [95% Conf. Interval]
     (1) | -16.47981 1.522754 -10.82 0.000
                                     -19.47101 -13.48862
       lincom c.demnf*-1 + c.demnc*1, small // Future vs Current = B5-B4
( 1) - [cognition]demnf + [cognition]demnc = 0
 cognition | Coef. Std. Err. t P>|t| [95% Conf. Interval]
(1) | -10.75784 1.707957 -6.30 0.000 -14.11284 -7.402844
. lincom c.demnf*.5 + c.demnc*.5, small // None vs Ever = (B4+B5)/2
(1) .5*[cognition]demnf + .5*[cognition]demnc = 0
______
 cognition | Coef. Std. Err. t P>|t| [95% Conf. Interval]
(1) | -11.10089 .9743564 -11.39 0.000 -13.01485 -9.18693
```

SAS MIXED Syntax and Output for Dementia Group Model in Equation 2.8 Using CLASS statement (SAS-coded contrasts instead of manually created contrasts)

Because the default reference group is the HIGHEST group numerically or last alphabetically, I have changed the model to reflect "Current" (group=3) as the reference:

```
Cognition<sub>i</sub> = \beta_0 + \beta_1 (Age_i - 85) + \beta_2 (Grip_i - 9) + \beta_3 (SexMW_i) + \beta_4 (DemCN_i) + \beta_5 (DemCF_i) + e_i
TITLE1 'Eq 2.8: Adding Dementia Group';
TITLE2 'Categorical Predictor for Dementia Group on CLASS statement';
PROC MIXED DATA=work.Chapter2 COVTEST NOCLPRINT NAMELEN=100 METHOD=REML;
    CLASS demgroup; * CLASS statement demgroup replaces previous dem contrasts;
    FORMAT demgroup Fdemgroup.; * Use value labels defined earlier in output;
    MODEL cognition = age85 grip9 sexMW demgroup / SOLUTION DDFM=BW;
    CONTRAST "Model R2 F-Test with df=5" age85 1, grip9 1, sexmw 1,
                                          demgroup -1 1 0, demgroup -1 0 1;
* Request conditional (adjusted) group means (hold age=85, grip=9, men) and all diffs;
    LSMEANS demgroup / DIFF=ALL AT(age85 grip9 sexMW) = (0 0 0);
* Request conditional (adjusted) group means and all differences for demonstration;
    LSMEANS demgroup / DIFF=ALL;
*** All of the code below is redundant with LSMEANS, but here is how you get all the info;
*** The exceptions are the lines that refer to the "ever" group, which is not a default;
 CONTRAST "Omnibus F-Test for Dementia Group with df=2" demgroup -1 1 0, demgroup -1 0 1;
* Request conditional (adjusted) group means (hold age=85, grip=9, men);
 ESTIMATE "Intercept for None Group" intercept 1 demgroup 1 0 0; * Not given (B0+B4);
 ESTIMATE "Intercept for Future Group" intercept 1 demgroup 0 1 0; * Not given (B0+B5);
 ESTIMATE "Intercept for Current Group" intercept 1 demgroup 0 0 1; * Given as B0;
 ESTIMATE "Intercept for Ever Group" intercept 1 demgroup 0 .5 .5; * (B0+B5)/2;
* Request group differences (unconditional because there are no interactions);
 ESTIMATE "None vs. Future Group" demgroup -1 1 0; * Not given (B5-B4);
 ESTIMATE "None vs. Current Group" demgroup -1 0 1; * Given as B5;
 ESTIMATE "Future vs. Current Group" demgroup 0 -1 1; * Given as B4;
                                       demgroup -1 .5 .5; * (B0+B5)/2 - B4;
 ESTIMATE "None vs. Ever Group"
RUN; TITLE1; TITLE2;
```

New output after using the CLASS statement for demgroup:

The row with the dot indicates which group is the reference. The other rows then indicate group mean differences relative to the reference group.

	Dementia					the reference group.			
	Group 1N		Standard						
Effect	2F 3C	Estimate	Error	DF	t Value	Pr > t			
Intercept		12.7845	1.5302	544	8.35	<.0001	new B0		
age85		-0.4057	0.1189	544	-3.41	0.0007	same B1		
grip9		0.6042	0.1498	544	4.03	<.0001	same B2		
sexMW		-3.6574	0.8914	544	-4.10	<.0001	same B3		
demgroup	1None	16.4798	1.5228	544	10.82	<.0001	new B4		
demgroup	2Future	10.7578	1.7080	544	6.30	<.0001	new B5		
demaroup	3Current	0					new ref a	roup	

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
age85	1	544	11.65	0.0007
grip9	1	544	16.27	<.0001
sexMW	1	544	16.83	<.0001
demgroup	2	544	67.06	<.0001

The multivariate Wald test for the omnibus main effect of demgroup is now given by default when using CLASS for demgroup.

Contrasts									
				Num	Den				
Label				DF	DF	F Value	Pr > F		
Model R2 F-	Test with df=	:5		5	544	41.75	<.0001		
Omnibus F-1	Test for Demer	itia Gr	oup with df=2	2	544	67.06	<.0001	now giv	en by default
			Estimat						
				es Standard					
l abal					DE	+ \/-1	D	- 1	
Label	Eam Nama Omaco		Estimate	Error	DF	t Value	Pr > t	•	
•	for None Group		29.2643	0.6985	544	41.90	<.000		
•	for Future Gro	•	23.5424	1.0785	544	21.83	<.000		
•	for Current Gr	oup	12.7845	1.5302	544	8.35	<.000		
	Future Group		-5.7220	1.0191	544	-5.61	<.000		
None vs. Current Group			-16.4798	1.5228	544	-10.82	<.000		
Future vs.	Current Group)	-10.7578	1.7080	544	-6.30	<.000	01	
Least Squares Me Dementia					ans	These grou which we r LSMEANS	equested,	are given	•
	Group 1N					Standard			
Effect	2F 3C	age85	grip9	sexMW	Estimate	Error	DF t	. Value	Pr > t
demgroup	1None	0.00	0.00	0.00	29.2643	0.6985	544	41.90	<.0001
demgroup	2Future	0.00	0.00	0.00	23.5424	1.0785	544	21.83	<.0001
demgroup	2Cuppent	0.00	0.00	0.00	12.7845	1.5302	544	8.35	<.0001
	3Current	0.00	0.00						
demgroup	1None	-0.07	0.11	0.59	27.2143	0.4702	544	57.88	<.0001
demgroup demgroup				0.59 0.59	27.2143 21.4923	0.4702 0.9024	544 544	57.88 23.82	<.0001 <.0001

The first three rows are adjusted group means at the specified levels of the other predictors.

The second three rows are group means at the sample mean values of the other predictors instead.

Differences of Least Squares Means

Dementia	Dementia								
Group 1N	Group 1N					Standard			
2F 3C	2F 3C	age85	grip9	sexMW	Estimate	Error	DF	t Value	Pr > t
1None	2Future	0.00	0.00	0.00	5.7220	1.0191	544	5.61	<.0001
1None	3Current	0.00	0.00	0.00	16.4798	1.5228	544	10.82	<.0001
2Future	3Current	0.00	0.00	0.00	10.7578	1.7080	544	6.30	<.0001
The first t	The first three rows are adjusted group mean differences at the specified levels of the other predictors								

The first three rows are adjusted group mean differences at the specified levels of the other predictors. The second three rows are group mean differences at the sample mean values of the other predictors instead. Because demgroup does not interact with these other predictors, the group mean differences are the same.

1None	2Future	-0.07	0.11	0.59	5.7220	1.0191	544	5.61	<.0001
1None	3Current	-0.07	0.11	0.59	16.4798	1.5228	544	10.82	<.0001
2Future	3Current	-0.07	0.11	0.59	10.7578	1.7080	544	6.30	<.0001

So to CLASS or not to CLASS? Either can work in every circumstance. The use of CLASS for categorical predictors can be more convenient in models with more than one categorical predictor (e.g., to get marginal and cell means for factorial designs), whereas manual group contrasts can be more convenient when most other predictors are continuous, or when some of your effects pertain to only some levels of the grouping variable (i.e., nested effects; stay tuned).

See example results section in chapter 2 of Hoffman (2015) for text describing the results.

STATA MIXED Syntax and Output for Dementia Group Model in Equation 2.8

Using factor variable statement (STATA-coded contrasts instead of manually created contrasts)

To match the SAS results, I changed the reference group to the HIGHEST group numerically or last alphabetically, I have changed the model to reflect "Current" (group=3) as the reference:

```
Cognition<sub>i</sub> = \beta_0 + \beta_1 (Age_i - 85) + \beta_2 (Grip_i - 9) + \beta_3 (SexMW_i) + \beta_4 (DemCN_i) + \beta_5 (DemCF_i) + e_i
display as result "Eq 2.8: Adding Dementia Group"
display as result "Using Manual Group Contrasts so Reference=None"
mixed cognition c.age85 c.grip9 c.sexmw ib(last).demgroup, ///
             variance reml dfmethod(residual),
                             The option SMALL cannot be used on MARGINS. You must provide the
     contrast i.demgroup, small exact denominator DF instead or use LINCOM to get them instead.
     margins i.demgroup, at(c.age85=0 c.grip9=0 c.sexmw=0) df(544)
     margins i.demgroup, df(544)
     margins i.demgroup, pwcompare(pveffects) df(544)
lincom _cons*1 + 1.demgroup*0 + 2.demgroup*.5 + 3.demgroup*.5, small // Ever = (B0+B5)/2
lincom
              1.demgroup*-1 + 2.demgroup*.5 + 3.demgroup*.5, small // NvE=(B0+B5)/2 -B4
Mixed-effects REML regression
                                                          550
                                     Number of obs =
DF method: Residual
                                     DF: min =
                                                       544.00
                                                avg = 544.00
max = 544.00
                                     F(5, 544.00) =
                                                       41.75
                                    Prob > F
Log restricted-likelihood = -2008.1345
                                                      0.0000
______
  cognition | Coef. Std. Err. t > |t| [95% Conf. Interval]
age85 | -.405734 .1188972 -3.41 0.001 -.6392878 -.1721802 same B1
     grip9 | .6042256 .1497757 4.03 0.000 .310016 .8984351 same B2
     sexmw | -3.657374 .8914326 -4.10 0.000 -5.408446 -1.906303 same B3
   demgroup |
    1None | 16.47981 1.522754 10.82 0.000 13.48862 19.47101 new B4
   2Future | 10.75784 1.707957 6.30 0.000 7.402844 14.11284 new B5
     _cons | 12.78451 1.530193 8.35 0.000 9.778701 15.79032 new B0
 Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
------
           var(Residual) \mid 88.07088 \quad 5.310874 \quad 78.25335 \quad 99.1201 \text{ same } \sigma_e^2
______
     contrast i.demgroup, small
Contrasts of marginal linear predictions
Margins : asbalanced
______
                                                F(2,544) = 67.06 is the multivariate Wald test
         | df ddf F
                                                for the model CHANGE in R<sup>2</sup> given two new
                                                model predictors. This is also known as the
cognition |
                                                "omnibus" main effect of group in ANOVA.
            2 544.00
   demgroup |
                               67.06 0.0000
```

```
Adjusted predictions
                                Number of obs
                                                  550
Expression : Linear prediction, fixed portion, predict()
        : age85
              =
          grip9
                            0
          sexmw
        | Delta-method
           Margin Std. Err. t P>|t| [95% Conf. Interval]
  demgroup |
   1None | 29.26433 .6985079 41.90 0.000 27.89222
                                               30.63643
                                             25.66095
                  1.07853 21.83 0.000 21.42376
  2Future | 23.54235
  3Current | 12.78451 1.530193 8.35 0.000 9.778701 15.79032
______
       margins i.demgroup, df(544)
Predictive margins
                                Number of obs
                                                  550
Expression : Linear prediction, fixed portion, predict()
______
           Delta-method
            Margin Std. Err.
                           t P>|t| [95% Conf. Interval]
  demgroup |
   1None | 27.21427 .4702141 57.88 0.000 26.29061 28.13792
  2Future |
          21.4923 .902428 23.82 0.000 19.71963 23.26497
 3Current | 10.73445 1.448621 7.41 0.000 7.888878 13.58003
     margins i.demgroup, pwcompare(pveffects) df(544)
Pairwise comparisons of predictive margins
Expression : Linear prediction, fixed portion, predict()
             Delta-method Unadjusted
                Contrast Std. Err. t P>|t|
             demgroup |
 2Future vs 1None | -5.721971 1.019078 -5.61 0.000
 3Current vs 1None | -16.47981 1.522754 -10.82 0.000
3Current vs 2Future | -10.75784   1.707957   -6.30   0.000
. lincom _cons*1 + 1.demgroup*0 + 2.demgroup*.5 + 3.demgroup*.5, small // Intercept Ever = (B0+B5)/2
(1) .5*[cognition]2.demgroup + .5*[cognition]3b.demgroup + [cognition]_cons = 0
______
 cognition | Coef. Std. Err. t > |t| [95% Conf. Interval]
(1) | 18.16343 1.011474 17.96 0.000 16.17656 20.15031
. lincom 1.demgroup*-1 + 2.demgroup*.5 + 3.demgroup*.5, small // None vs Ever = (B0+B5)/2-B4
(1) - [cognition]1.demgroup + .5*[cognition]2.demgroup + .5*[cognition]3b.demgroup = 0
-----
            Coef. Std. Err. t P>|t| [95% Conf. Interval]
 cognition |
(1) | -11.10089 .9743564 -11.39 0.000 -13.01485
```

margins i.demgroup, at(c.age85=0 c.grip9=0 c.sexmw=0) df(544)