Higher-Order Models (CFA using MLR; then IFA using WLSMV) in Mplus version 8.1

Example data: 1,336 college students self-reporting on 49 items (measuring five factors) assessing childhood maltreatment. Items are answered on a 1–5 scale: 1=Strongly Disagree, 2=Disagree, 3=Neutral, 4=Agree, 5=Strongly Agree. The item responses are NOT normally distributed, so we'll use both CFA with MLR and IFA with WLSMV as two options to examine the fit of these models (as an example of how to do each, but NOT to compare between estimators).

1. Spurning: Verbal and nonverbal caregiver acts that reject and degrade a child

2. Terrorizing: Caregiver behaviors that threaten or are likely to physically hurt, kill, abandon, or place the child or the child's loved ones or objects in recognizably dangerous situations.

3. Isolating: Caregiver acts that consistently deny the child opportunities to meet needs for interacting or communicating with peers or adults inside or outside the home.

4. Corrupting: Caregiver acts that encourage the child to develop inappropriate behaviors (self-destructive, antisocial, criminal, deviant, or other maladaptive behaviors).

5. Ignoring: Emotional unresponsiveness includes caregiver acts that ignore the child's attempts and needs to interact (failing to express affection, caring, and love for the child) and show no emotion in interactions with the child

Here are the results from fitting the 5 factors separately to ensure their individual fit FIRST (see Mplus output files for details):

	ASESSMENT OF MODEL FIT USING MLR											
Model	# Items	# Possible Parms	# Free Parms	Chi-Square Value	Chi-Square Scale Factor		Chi-Square p-value	CFI	RMSEA Estimate	RMSEA Lower Cl	RMSEA Higher Cl	RMSEA p-value
MLR Spurning	12	90	36	224.797	1.4009	54	<.0001	0.959	0.049	0.042	0.055	0.619
MLR Terror	9	54	27	189.815	1.5876	27	<.0001	0.918	0.067	0.058	0.076	0.001
MLR Isolate	6	27	18	80.354	1.4944	9	<.0001	0.916	0.077	0.062	0.093	0.002
MLR Corrupt	7	35	21	54.964	1.9075	14	<.0001	0.934	0.047	0.034	0.060	0.633
MLR Ignore	15	135	45	484.291	1.7921	90	<.0001	0.932	0.057	0.052	0.062	0.008
MLR 1 factor only	49	1274	147	6,183.986	1.4874	1127	<.0001	0.766	0.058	0.057	0.059	<.0001
MLR 5 correlated factors	49	1274	157	4,424.700	1.4645	1117	<.0001	0.847	0.047	0.046	0.049	1.000
MLR 5 factors + higher order	49	1274	152	4,486.382	1.4681	1122	<.0001	0.844	0.047	0.046	0.049	0.999
MLR 5 factors + HO + 2 res cov	49	1274	154	4,422.556	1.4669	1120	<.0001	0.847	0.047	0.046	0.048	1.000

ASESSMENT OF MODEL FIT USING WLSMV

Model	# Items	# Possible Parms	# Free Parms	Chi-Square Value	Chi-Square Scale Factor		Chi-Square p-value	CFI	RMSEA Estimate	RMSEA Lower Cl	RMSEA Higher CI	RMSEA p-value
WLSMV Spurning	12	126	60	294.707		54	<.0001	0.983	0.058	0.051	0.064	0.023
WLSMV Terror	9	81	45	263.156		27	<.0001	0.966	0.081	0.072	0.090	<.0001
WLSMV Isolate	6	45	30	129.827		9	<.0001	0.962	0.100	0.085	0.116	<.0001
WLSMV Corrupt	7	56	35	87.490		14	<.0001	0.976	0.063	0.050	0.076	0.044
WLSMV Ignore	15	180	75	897.694		90	<.0001	0.976	0.082	0.077	0.087	<.0001
WLSMV 1 factor only	49	1421	245	7,563.403		1127	<.0001	0.903	0.065	0.064	0.067	<.0001
WLSMV 5 correlated factors	49	1421	255	5,934.139		1117	<.0001	0.927	0.057	0.055	0.058	<.0001
WLSMV 5 factors + higher order	49	1421	250	5,941.909		1122	<.0001	0.927	0.057	0.055	0.058	<.0001
WLSMV 5 factors + HO + 2 res cov	49	1421	252	5,853.778		1122	<.0001	0.928	0.056	0.055	0.058	<.0001

CLDP 948 Example 8 page 2

Here are the standardized factor loadings for each item under each estimation method. Note that the WLSMV factor loadings are higher in this case – probably because of range restriction in the original data and thus the implausibility of a linear model.

MLR	WLSMV	MLR	WLSMV	MLR	WLSMV	MLR	WLSMV	MLR	WLSMV
Spurning	Spurning	Terror	Terror	Isolate	Isolate	Corrupt	Corrupt	Ignore	Ignore
0.599	0.660	0.512	0.617	0.521	0.696	0.589	0.739	0.672	0.813
0.457	0.528	0.673	0.771	0.550	0.630	0.545	0.713	0.654	0.749
0.769	0.837	0.451	0.713	0.545	0.685	0.375	0.523	0.657	0.748
0.526	0.597	0.612	0.721	0.540	0.629	0.545	0.854	0.724	0.801
0.607	0.677	0.571	0.787	0.563	0.726	0.631	0.826	0.445	0.540
0.816	0.865	0.554	0.617	0.752	0.822	0.580	0.708	0.745	0.833
0.835	0.907	0.685	0.805			0.646	0.840	0.847	0.913
0.465	0.538	0.643	0.743					0.713	0.813
0.516	0.728	0.732	0.815					0.808	0.891
0.655	0.744							0.749	0.845
0.674	0.756							0.656	0.795
0.610	0.680							0.830	0.904
								0.712	0.806
								0.739	0.815
								0.825	0.918

Strawman model: Syntax for single-factor CFA model estimated using MLR through 5 PERFECTLY correlated factors

```
DATA: FILE IS abuse.csv;
                                                                       THE MODEL ESTIMATION TERMINATED NORMALLY
VARIABLE:
NAMES ARE ID ! All variables in DATA SET
                                                                       Because the factor covariances were fixed to 1, you will see the
 p01 p02 p03 p04 p05 p06 p07 p08 p09 p10
                                                                       message below. In THIS CONTEXT ONLY, you can ignore it.
 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20
 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30
                                                                       WARNING: THE LATENT VARIABLE COVARIANCE MATRIX (PSI) IS NOT POSITIVE
 p31 p32 p33 p34 p35 p36 p37 p38 p39 p40
                                                                       DEFINITE. THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE
 p41 p42 p43 p44 p45 p46 p47 p48 p49 p50
                                                                       FOR A LATENT VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN
 p51 p52 p53 p54 p55 p56 p57;
                                                                       TWO LATENT VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO
                                                                       LATENT VARIABLES. CHECK THE TECH4 OUTPUT FOR MORE INFORMATION.
USEVARIABLES ARE ! All variables in MODEL
                                                                       PROBLEM INVOLVING VARIABLE TERROR.
 p01 p02 p03 p04 p06 p07
                                p09 p10
 p11 p12 p13 p14 p16 p17 p18 p19 p20
                                                                       MODEL FIT INFORMATION
 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30
                                                                       Number of Free Parameters
                                                                                                                   147
      p33 p35 p36 p37 p39 p40
                                                                       Loglikelihood
         p43 p44 p45 p46 p47 p48 p49 p50
                                                                                HO Value
                                                                                                            -70386.526
 p51 p52 p53 p54 p55 p56 p57;
                                                                                HO Scaling Correction Factor 2.3983
IDVARIABLE IS ID;
                                                                                 for MIR
                                                                                                             -65787.405
                                                                               H1 Value
ANALYSIS: ESTIMATOR IS MLR; ! For non-normal continuous items
                                                                               H1 Scaling Correction Factor 1.5925
OUTPUT:
                             ! Standardized solution
                                                                                 for MLR
           MODINDICES (3.84) ! Voodoo for fixing the model
           RESIDUAL ! Local fit info
                                                                       Information Criteria
           TECH4:
                           ! Factor correlation matrix
                                                                                                            141067.051
                                                                               Akaike (AIC)
!SAVEDATA: SAVE = FSCORES: ! Save factor scores
                                                                               Bayesian (BIC)
                                                                                                            141831.074
            FILE = Abuse Thetas.dat;  ! File of factor scores
                                                                               Sample-Size Adjusted BIC
                                                                                                             141364.120
            MISSFLAG = 99: ! Indicate missing values
                                                                                 (n* = (n + 2) / 24)
            TYPE IS PLOT1 PLOT2 PLOT3: ! Pictures
!PLOT:
                                                                       Chi-Square Test of Model Fit
MODEL: ! (To be changed below for each model)
                                                                                Value
                                                                                                               6183.986*
                                                                                Degrees of Freedom
                                                                                                                 1127
! 5 Factors (loadings for first item are estimated)
                                                                                P-Value
                                                                                                                 0.0000
! 12-Item Spurning
                                                                                Scaling Correction Factor
                                                                                                               1.4874
 Spurn BY p06* p10* p14* p25* p27* p29* p33* p35* p48* p49* p53* p54*;
                                                                                  for MLR
! 9-Item Terrorizing
 Terror BY p07* p11* p13* p17* p24* p26* p36* p55* p56*;
                                                                       RMSEA (Root Mean Square Error Of Approximation)
! 6-Item Isolating
                                                                               Estimate
                                                                                                                 0.058
 Isolate BY p01* p18* p19* p23* p39* p43*;
                                                                                90 Percent C.I.
                                                                                                                 0.057 0.059
! 7-Item Corrupting
                                                                                Probability RMSEA <= .05
                                                                                                                 0.000
 Corrupt BY p09* p12* p16* p20* p28* p47* p50*;
! 15-Item Ignoring
                                                                       CFT/TLT
 Ignore BY p02* p03* p04* p21* p22* p30* p31* p37* p40* p44*
                                                                                                                  0.766
          p45* p46* p51* p52* p57*;
                                                                                TIT
                                                                                                                  0.756
! Factor Variances (all must be fixed to 1 for identification)
                                                                       SRMR (Standardized Root Mean Square Residual)
 Spurn@1 Terror@1 Isolate@1 Corrupt@1 Ignore@1;
                                                                                Value
                                                                                                                  0.062
! Factor Means (all fixed = 0 by default)
 [Spurn@0 Terror@0 Isolate@0 Corrupt@0 Ignore@0];
                                                                       #free parameters = 147 = 49 loadings + 49 intercepts + 49 residuals
! Factor Covariance (all fixed to 1 to create 1-factor model)
 Spurn Terror Isolate Corrupt Ignore WITH
                                                                        + 0 factor variances + 0 factor covariances = 147 parms USED
 Spurn@1 Terror@1 Isolate@1 Corrupt@1 Ignore@1;
                                                                       Possible = 49*50/2 + 49 = 1274
                                                                       DF =1117 calculation: 1274 - 147 = 1127
```

Syntax for CFA model with MLR including all 5 non-perfectly correlated factors ("saturated structural model") for comparison:

```
MODEL: ! (To be changed below for each model)
! 5 Factors (loadings for first item are estimated)
! 12-Item Spurning
 Spurn BY p06* p10* p14* p25* p27* p29* p33* p35* p48* p49* p53* p54*;
! 9-Item Terrorizing
 Terror BY p07* p11* p13* p17* p24* p26* p36* p55* p56*;
! 6-Item Isolating
 Isolate BY p01* p18* p19* p23* p39* p43*;
! 7-Item Corrupting
 Corrupt BY p09* p12* p16* p20* p28* p47* p50*;
! 15-Item Ignoring
 Ignore BY p02* p03* p04* p21* p22* p30* p31* p37* p40* p44*
            p45* p46* p51* p52* p57*;
! Factor Variances (all must be fixed to 1 for identification)
 Spurn@1 Terror@1 Isolate@1 Corrupt@1 Ignore@1;
! Factor Means (all fixed = 0 by default)
 [Spurn@0 Terror@0 Isolate@0 Corrupt@0 Ignore@0];
! Factor Covariances (all estimated to allow 5-factor model)
 Spurn Terror Isolate Corrupt Ignore WITH
 Spurn* Terror* Isolate* Corrupt* Ignore*;
```

Do we have one factor or five factors?

According to the $-2\Delta LL$ scaled difference relative to the previous single-factor model: $-2\Delta LL$ (10) = 671.689, p < .0001

Therefore, one factor does not capture the covariances for these 49 items. Five factors (as hypothesized) does a significantly better job.

Here are the correlations among the latent factors we are now trying to account for—with models that replace them with a higher-order factor.

Saturated: 5-Factor All Covariances Model

	SPURN	TERROR	ISOLATE	CORRUPT	IGNORE
SPURN	1.000				
TERROR	.929	1.000			
ISOLATE	.898	.876	1.000		
CORRUPT	.689	.792	.658	1.000	
IGNORE	.830	.767	.828	.630	1.000

<u>NOTE:</u> With respect to fit of the structural model, letting the 5 factors just be correlated is as good as it gets. This saturated structural model will be our "larger model" baseline with which to compare the fit of models that try to account for these correlations via a higher-order factor ("smaller models").

Number of Free Parameters Loglikelihood	157
HO Value HO Scaling Correction Factor for MLR	-69027.431 2.5033
H1 Value H1 Scaling Correction Factor for MLR	-65787.405 1.5925
Information Criteria	
Akaike (AIC) Bayesian (BIC) Sample-Size Adjusted BIC (n* = (n + 2) / 24)	138368.862 139184.860 138686.140
Chi-Square Test of Model Fit	
Value Degrees of Freedom P-Value Scaling Correction Factor for MLR	4424.700* 1117 0.0000 1.4645
RMSEA (Root Mean Square Error Of Approx	ximation)
Estimate 90 Percent C.I. Probability RMSEA <= .05	0.047 0.046 0.049 1.000
CFI/TLI CFI TLI	0.847 0.839
SRMR (Standardized Root Mean Square Re- Value	sidual) 0.057

#free parameters = 157 = 49 loadings + 49 intercepts + 49 residuals + 0 factor variances + 10 factor covariances = 157 parms USED

Possible = 49*50/2 + 49 = 1274

DF =1117 calculation: 1274 - 157 = 1117

Now we can test the fit of a constrained structural model that posits a single higher-order "General Abuse" factor to account for the correlations among these 5 latent factors (shown on the left from TECH 4).

Syntax for CFA model with MLR and a higher-order factor instead of correlations among 5 factors ("smaller/bigger model" for comparison):

```
MODEL: ! (To be changed below for each model)
! 5 Lower-Order Factors (loadings for first item NOW FIXED =1)
! 12-Item Spurning
 Spurn BY p06@1 p10* p14* p25* p27* p29* p33* p35* p48* p49* p53* p54*;
! 9-Item Terrorizing
 Terror BY p07@1 p11* p13* p17* p24* p26* p36* p55* p56*;
! 6-Item Isolating
 Isolate BY p01@1 p18* p19* p23* p39* p43*;
! 7-Item Corrupting
 Corrupt BY p09@1 p12* p16* p20* p28* p47* p50*;
! 15-Item Ignoring
 Ignore BY p02@1 p03* p04* p21* p22* p30* p31* p37* p40* p44*
           p45* p46* p51* p52* p57*;
! Factor Variances (all must be free - NOW ARE "DISTURBANCES")
 Spurn* Terror* Isolate* Corrupt* Ignore*;
! Factor Means (all fixed = 0 by default)
 [Spurn@0 Terror@0 Isolate@0 Corrupt@0 Ignore@0];
! Higher-Order Factor (estimate higher-order factor loadings)
 Abuse BY Spurn* Terror* Isolate* Corrupt* Ignore*;
! Fix higher-order factor mean=0 & variance=1
  [Abuse@0]; Abuse@1;
```

We can use a $-2\Delta LL$ scaled difference to test the fit of the higher-order factor model against the saturated structural model with all possible factor correlations. This higher-order factor model uses 5 fewer parameters: 5 higher-order loadings replace the 10 covariances among the factors. The $-2\Delta LL$ scaled difference is $-2\Delta LL$ (5) = 46.848, p < .0001.

So trying to reproduce the 5 factor covariances with a single higher-order factor results in a significant decrease in fit. Why might this be the case? All the lower-order factors have large (enough) standardized loadings...

STDYX Standardization

					Two-Tailed
		Estimate	S.E.	Est./S.E.	P-Value
ABUSE	BY	(HIGHER-ORDER STANDA	ARDIZED L	OADINGS)	
SPU	IRN	0.971	0.010	101.941	0.000
TER	ROR	0.952	0.011	88.191	0.000
ISC	LATE	0.933	0.016	59.159	0.000
COR	RUPT	0.745	0.027	27.312	0.000
IGN	IORE	0.846	0.018	48.111	0.000
ı					

<u>NOTE:</u> With respect to fit of the structural model, we are now fitting a single higher-order factor INSTEAD OF covariances among the 5 factors.

Number of Free Parameters	152	
Loglikelihood	C0000 CEC	
H0 Value H0 Scaling Correction Factor	-69080.656	
for MLR	2.5109	
H1 Value	-65787.405	
H1 Scaling Correction Factor		
for MLR		
Information Criteria		
Akaike (AIC)	138465.313	
Bayesian (BIC)	139255.323	
Sample-Size Adjusted BIC	138772.486	
$(n^* = (n + 2) / 24)$		
Chi-Square Test of Model Fit		
Value	4486.382*	
Degrees of Freedom	1122	
P-Value	0.0000	
Scaling Correction Factor for MLR	1.4681	
RMSEA (Root Mean Square Error Of Approx	kimation)	
Estimate	0.047	
90 Percent C.I.	0.046	0.049
Probability RMSEA <= .05	0.999	
CFI/TLI		
CFI	0.844	
TLI	0.837	
SRMR (Standardized Root Mean Square Res		
Value	0.058	
#free parameters = 152 = 44 loadings + 49	9 intercepts +	49 residuals
+ 5 factor variances + 5 higher-order lo		

Possible = 49*50/2 + 49 = 1274

DF =1117 calculation: 1274 - 152 = 1122

Higher-Order Factor Model Output; Comparison of Saturated versus Higher-Order Factor Model predicted correlations:

```
MODEL MODIFICATION INDICES
Minimum M.I. value for printing the modification index
                               E.P.C. Std E.P.C. StdYX E.P.C.
                       M.I.
TERROR WITH SPURN
                       4.111 0.011 0.454
                                                   0.454
CORRUPT WITH SPURN
                       18.864 -0.018
                                       -0.451
                                                  -0.451
                       44.080 0.021 0.595
                                                   0.595
CORRUPT WITH TERROR
                      4.628 -0.006 -0.193
                                                -0.193
CORRUPT WITH ISOLATE
IGNORE WITH SPURN
                       4.800 0.010 0.248
                                                 0.248
                       31.774 -0.018 -0.510
                                                  -0.510
IGNORE WITH TERROR
                       14.098 0.010
                                        0.317
                                                   0.317
IGNORE WITH ISOLATE
```

Based on the modification indices (which are picking up on the discrepancies between the saturated model and higher-order factor model in the factor correlations, it appears we need to allow two more relationships among the factor disturbances, as follows:

```
MODEL: ! (To be changed below for each model)
! 5 Lower-Order Factors (loadings for first item NOW FIXED =1)
! 12-Item Spurning
  Spurn BY p06@1 p10* p14* p25* p27* p29* p33* p35* p48* p49* p53* p54*;
! 9-Item Terrorizing
 Terror BY p07@1 p11* p13* p17* p24* p26* p36* p55* p56*;
! 6-Item Isolating
 Isolate BY p01@1 p18* p19* p23* p39* p43*;
! 7-Item Corrupting
  Corrupt BY p09@1 p12* p16* p20* p28* p47* p50*;
! 15-Item Ignoring
  Ignore BY p02@1 p03* p04* p21* p22* p30* p31* p37* p40* p44*
           p45* p46* p51* p52* p57*;
! Factor Variances (all must be free - NOW ARE "DISTURBANCES")
  Spurn* Terror* Isolate* Corrupt* Ignore*;
! Factor Means (all fixed = 0 by default)
  [Spurn@0 Terror@0 Isolate@0 Corrupt@0 Ignore@0];
! Higher-Order Factor (estimate higher-order factor loadings)
  Abuse BY Spurn* Terror* Isolate* Corrupt* Ignore*;
! Fix higher-order factor mean=0 & variance=1
  [Abuse@0]; Abuse@1;
! Add disturbance covariances suggested by voo-doo
 Corrupt WITH Terror*;
 Ignore WITH Terror*;
```

	MLR Solutions							
	Saturated: 5-Factor All Covariances Model							
	SPURN	TERROR	ISOLATE	CORRUPT	IGNORE			
SPURN	1.000	TERROR	IJOLATE	CORROLL	IGNORE			
TERROR	.929	1.000						
ISOLATE	.898	.876	1.000					
CORRUPT	.689	.792	.658	1.000				
IGNORE	.830	.767	.828	.630	1.000			
IGNORE	.030	.707	.020	.030	1.000			
P	redicted 1: 5	-Factor + H	igher-Order	Factor Mod	del			
-	SPURN	TERROR	ISOLATE	CORRUPT	IGNORE			
SPURN	1.000	TEINIGH	1002,112	COMMON	IONONE			
TERROR	.925	1.000						
ISOLATE	.906	.889	1.000					
CORRUPT	.724	.710	.696	1.000				
IGNORE	.821	.806	.790	.631	1.000			
ICITOTILE	.021	.000	.,50	.031	1.000			
Discrepancy: Saturated - Predicted 1								
		-			IGNORF			
SPURN								
	.004							
		013						
			038					
				001				
Predicto	ed 2: 5-Facto	r + Higher-(Order Facto	r + 2 Fact Co	ov Model			
	SPURN	TERROR	ISOLATE	CORRUPT	IGNORE			
SPURN	1.000							
TERROR	.923	1.000						
ISOLATE	.898	.894	1.000					
CORRUPT	.690	.794	.668	1.000				
IGNORE	.838	.766	.812	.623	1.000			
	Discrep	ancy: Satu	rated - Pred	licted 2				
	SPURN	TERROR		CORRUPT	IGNORE			
SPURN								
TERROR	.006							
ISOLATE	.000	018						
CORRUPT	001	002	010					
IGNORE	008	.001	.016	.007				
SPURN TERROR ISOLATE CORRUPT IGNORE SPURN TERROR ISOLATE CORRUPT	1.000 .923 .898 .690 .838 Discrept SPURN .006 .000	1.000 .894 .794 .766 Dancy: Satu TERROR 018 002	1.000 .668 .812 rated - Pred ISOLATE	1.000 .623 licted 2 CORRUPT	IGNORE			

	INFORMATION		
Number of	Free Parameters	154	
Loglikeli	hood		
	HO Value	-69031.180	
	HO Scaling Correction Factor	2.5060	
	for MLR		
	H1 Value	-65787.405	
	H1 Scaling Correction Factor		
	for MLR	1.0320	
	TOT TIME		
Informati	on Criteria		
IIIIOIIIIaci	Akaike (AIC)	138370.360	
	• •		
	Bayesian (BIC) Sample-Size Adjusted BIC	139170.765	
		138681.575	
	$(n^* = (n + 2) / 24)$		
Chi-Squar	e Test of Model Fit		
	Value	4422.556*	
	Degrees of Freedom	1120	
	P-Value	0.0000	
	Scaling Correction Factor	1.4669	
	for MLR		
RMSEA (Ro	ot Mean Square Error Of Approx	kimation)	
	Estimate	0.047	
	90 Percent C.I.	0.046	0.048
	Probability RMSEA <= .05	1.000	
	responsible frame in the second	1.000	
CFI/TLI			
011/111	CFI	0.847	
	CLI	0.04/	
	mt t	0 040	
	TLI	0.840	
CDMD (Cha			
SRMR (Sta	ndardized Root Mean Square Res	sidual)	
SRMR (Sta			
SRMR (Sta	ndardized Root Mean Square Res	sidual)	
	ndardized Root Mean Square Res Value	sidual)	
	ndardized Root Mean Square Res	sidual)	
	ndardized Root Mean Square Res Value ndardization	sidual) 0.057	Two-Tailed
STDYX Sta	ndardized Root Mean Square Res Value ndardization Estimate S.E.	0.057 0.57 Est./S.E.	
STDYX Sta	ndardized Root Mean Square Res Value ndardization Estimate S.E. BY (HIGHER-ORDER STANDARDIZED	0.057 0.057 Est./S.E.	P-Value
STDYX Sta	ndardized Root Mean Square Res Value ndardization Estimate S.E. BY (HIGHER-ORDER STANDARDIZED	o.057 0.057 Est./S.E. LOADINGS) 87.824	P-Value 0.000
STDYX Sta	ndardized Root Mean Square Res Value ndardization Estimate S.E. BY (HIGHER-ORDER STANDARDIZED 0.963 0.011	o.057 0.057 Est./S.E. LOADINGS) 87.824	P-Value 0.000
STDYX Sta	ndardized Root Mean Square Res Value ndardization Estimate S.E. BY (HIGHER-ORDER STANDARDIZED 0.963 0.011	o.057 0.057 Est./S.E. LOADINGS) 87.824	P-Value 0.000
STDYX Sta ABUSE SPURN TERRO	ndardized Root Mean Square Res Value ndardization Estimate S.E. BY (HIGHER-ORDER STANDARDIZED 0.963 0.011 R 0.958 0.012 TE 0.933 0.016	Est./S.E. LOADINGS) 87.824 277.198 58.212	P-Value 0.000 0.000 0.000
STDYX Sta ABUSE SPURN TERRO ISOLA	ndardized Root Mean Square Res Value ndardization Estimate S.E. BY (HIGHER-ORDER STANDARDIZED 0.963 0.011 R 0.958 0.012 TE 0.933 0.016 PT 0.716 0.028	Est./S.E. LOADINGS) 87.824 277.198 58.212	P-Value 0.000 0.000 0.000 0.000
STDYX Sta ABUSE SPURN TERRO ISOLA CORRU	ndardized Root Mean Square Res Value ndardization Estimate S.E. BY (HIGHER-ORDER STANDARDIZED 0.963 0.011 R 0.958 0.012 TE 0.933 0.016 PT 0.716 0.028	Est./S.E. LOADINGS) 87.824 77.198 58.212 8 25.150	P-Value 0.000 0.000 0.000 0.000
STDYX Sta ABUSE SPURN TERRO ISOLA CORRU IGNOR	ndardized Root Mean Square Res Value ndardization Estimate S.E. BY (HIGHER-ORDER STANDARDIZED 0.963 0.011 R 0.958 0.012 TE 0.933 0.016 PT 0.716 0.028 E 0.870 0.019	Est./S.E. LOADINGS) 87.824 77.198 58.212 8 25.150	P-Value 0.000 0.000 0.000 0.000
STDYX Sta ABUSE SPURN TERRO ISOLA CORRU IGNOR CORRUPT	ndardized Root Mean Square Res Value ndardization Estimate S.E. BY (HIGHER-ORDER STANDARDIZED 0.963 0.011 R 0.958 0.012 TE 0.933 0.016 PT 0.716 0.028 E 0.870 0.019	Sidual) 0.057 . Est./S.E. LOADINGS) 87.824 277.198 5 58.212 8 25.150 9 45.845	P-Value 0.000 0.000 0.000 0.000 0.000
STDYX Sta ABUSE SPURN TERRO ISOLA CORRU IGNOR CORRUPT TERRO	ndardized Root Mean Square Res Value ndardization Estimate S.E. BY (HIGHER-ORDER STANDARDIZED 0.963 0.011 R 0.958 0.012 TE 0.933 0.016 PT 0.716 0.028 E 0.870 0.019 WITH R 0.540 0.097	Sidual) 0.057 . Est./S.E. LOADINGS) 87.824 277.198 5 58.212 8 25.150 9 45.845	P-Value 0.000 0.000 0.000 0.000 0.000
STDYX Sta ABUSE SPURN TERRO ISOLA CORRU IGNOR	ndardized Root Mean Square Res Value ndardization Estimate S.E. BY (HIGHER-ORDER STANDARDIZED 0.963 0.011 R 0.958 0.012 TE 0.933 0.016 PT 0.716 0.028 E 0.870 0.019 WITH R 0.540 0.097	Sidual) 0.057 Est./S.E. LOADINGS) 87.824 77.198 5 58.212 8 25.150 45.845	P-Value 0.000 0.000 0.000 0.000 0.000

Next we will duplicate these analyses using WLSMV, which requires starting with the biggest model first...

Two comparisons are relevant.

First, did we help the higher-order factor model by adding two covariances among the factor disturbances? $-2\Delta LL$ (2) = 46.378, p < .0001, so yes, model fit is better.

Second, does the revised higher-order factor model fit nonsignificantly worse than the saturated structural model with all 10 correlations among the 5 factors? $-2\Delta LL$ (3) = 3.171, p = .3660, so yes, our revised model captures those 10 correlations using 3 fewer parameters (5 loadings + 2 covariances).

Example results section for CFA using MLR:

After examining the fit of each of the five factors individually, as described previously, a combined model was estimated in which all five factors were fit simultaneously with covariances estimated freely among them. A total of 49 items were thus included. Robust maximum likelihood (MLR) estimation was used to estimate all models using Mplus v. 8.1 (Muthén & Muthén, 1998–2017), and differences in fit between nested models were evaluated using -2^* rescaled difference in the model log-likelihood values. The fit of each model referenced below is shown in Table 1.

We first established the need for 5 factors by showing a significant decrease in fit for a single-factor model relative to that of the 5-factor model, $-2\Delta LL$ (10) = 671.689, p < .0001. As shown in Table 1, the fit of the model with five correlated factors was acceptable by the RMSEA (.047), but not by the CFI (.847). Standardized model parameters (loadings, intercepts, and residual variances) are shown in Table 2. Correlations of .6 or higher were found amongst the five factors, suggesting evidence that the five factors may indicate a single higher-order factor. This idea was testing by eliminating the covariances among the factors and instead estimating loadings for the five factors from a single higher-order factor (whose variance was fixed to 1). Although the fit of the higher-order factor model remained marginal (see Table 1), a nested model comparison revealed a significant decrease in fit, $-2\Delta LL(5) = 46.848$, p < .0001, indicating that a single factor did not appear adequate to describe the pattern of correlation amongst the five factors. Inspection of the discrepancy between the factor correlations from the 5-factor model and those predicted by the higher-order factor indicated two sources of misfit—the correlation between Corrupt and Terror was under-estimated, whereas the correlation between Ignore and Terror was overestimated. These discrepancies were captured via two additional covariances among those lower-order factor disturbances, resulting in a significant improvement in fit, $-2\Delta LL(2) = 46.378$, p < .0001. Further, the revised model successfully accounted for the pattern of correlation among the 5 factors, as indicated by a nonsignificant decrease in model fit relative to the model with all 10 factor correlations estimated directly, $-2\Delta LL(3) = 3.171$, p = .3660.

Syntax for IFA model with WLSMV including all 5 non-perfectly correlated factors ("saturated structural model") for comparison:

```
DATA: FILE IS abuse.csv:
VARIABLE:
                                                                      MODEL: ! (To be changed below for each model)
NAMES ARE ID ! All variables in DATA SET
 p01 p02 p03 p04 p05 p06 p07 p08 p09 p10
                                                                      ! 5 Factors (loadings for first item are estimated)
 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20
                                                                      ! 12-Item Spurning
 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30
                                                                        Spurn BY p06* p10* p14* p25* p27* p29* p33* p35* p48* p49* p53* p54*;
 p31 p32 p33 p34 p35 p36 p37 p38 p39 p40
                                                                       ! 9-Item Terrorizing
 p41 p42 p43 p44 p45 p46 p47 p48 p49 p50
                                                                        Terror BY p07* p11* p13* p17* p24* p26* p36* p55* p56*;
 p51 p52 p53 p54 p55 p56 p57;
                                                                      ! 6-Item Isolating
                                                                       Isolate BY p01* p18* p19* p23* p39* p43*;
USEVARIABLES ARE ! All variables in MODEL
                                                                      ! 7-Item Corrupting
                     p06 p07
                                                                       Corrupt BY p09* p12* p16* p20* p28* p47* p50*;
 p01 p02 p03 p04
                                 p09 p10
 p11 p12 p13 p14
                   p16 p17 p18 p19 p20
                                                                      ! 15-Item Ignoring
 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30
                                                                        Ignore BY p02* p03* p04* p21* p22* p30* p31* p37* p40* p44*
                                                                                   p45* p46* p51* p52* p57*;! Factor Variances (all must be
       p33 p35 p36 p37 p39 p40
         p43 p44 p45 p46 p47 p48 p49 p50
                                                                      fixed to 1 for identification)
 p51 p52 p53 p54 p55 p56 p57;
                                                                        Spurn@1 Terror@1 Isolate@1 Corrupt@1 Ignore@1;
IDVARIABLE IS ID;
                                                                      ! Factor Means (all fixed = 0 by default)
                                                                         [Spurn@0 Terror@0 Isolate@0 Corrupt@0 Ignore@0];
CATEGORICAL ARE ! All variables for IFA
                                                                       ! Factor Covariances (all estimated to allow 5-factor model)
 p01 p02 p03 p04
                     p06 p07
                                                                        Spurn Terror Isolate Corrupt Ignore WITH
                  p16 p17 p18 p19 p20
                                                                        Spurn* Terror* Isolate* Corrupt* Ignore*;
p11 p12 p13 p14
p21 p22 p23 p24 p25 p26 p27 p28 p29 p30
        p33 p35 p36 p37 p39 p40
        p43 p44 p45 p46 p47 p48 p49 p50
                                                                      NOTE: With respect to fit of the structural model, letting the 5 factors just be
p51 p52 p53 p54 p55 p56 p57;
                                                                      correlated is as good as it gets. This saturated structural model will be our
OUTPUT:
                              ! Standardized solution
                                                                       "larger model" baseline with which to compare the fit of models that try to
           MODINDICES (3.84) ! Voodoo for fixing the model
                                                                      account for these correlations via a higher-order factor ("smaller models").
           RESIDUAL
                              ! Local fit info
            TECH4:
                              ! Factor correlation matrix
                                                                      MODEL FIT INFORMATION
PLOT:
            TYPE IS PLOT1 PLOT2 PLOT3; ! Pictures
                                                                      Number of Free Parameters
                                                                                                                      255
ANALYSIS:
           ESTIMATOR IS WLSMV:
                                       ! Limited info estimator
                                                                      Chi-Square Test of Model Fit
           PARAMETERIZATION IS THETA;
                                                                                Value
                                                                                                                 5934.139*
                                                                                Degrees of Freedom
                                                                                                                   1117
                                      ! Save fit of 5 factor model
SAVEDATA: DIFFTEST=5factor.dat:
                                                                                P-Value
                                                                                                                   0.0000
                                                                      RMSEA (Root Mean Square Error Of Approximation)
                                                                                Estimate
                                                                                                                   0.057
#free parameters = 255 = 49 loadings + 49*4=196 thresholds
                                                                                90 Percent C.I.
                                                                                                                   0.055 0.058
   + 0 factor variances + 10 factor covariances = 255 parms USED
                                                                                Probability RMSEA <= .05
                                                                                                                   0.000
                                                                      CFT/TLT
Possible = 49*50/2 + 49*4 = 1421
                                                                                                                    0.927
                                                                                CFI
DF =1117 calculation: 1421 – 255 – 49 "residual variances" = 1117
                                                                                TIT
                                                                                                                    0.923
                                                                      SRMR (Standardized Root Mean Square Residual)
                                                                                                                    0.056
                                                                                Value
```

Strawman model: Syntax for single-factor IFA model estimated using WLSMV through 5 PERFECTLY correlated factors

```
ANALYSTS: ESTIMATOR IS WISMV:
                                      ! Limited info estimator
                                                                          THE MODEL ESTIMATION TERMINATED NORMALLY
            PARAMETERIZATION IS THETA;
           DIFFTEST=5factor.dat;
                                   ! Test fit against saturated
                                                                          Because the factor covariances were fixed to 1, you will see the
                                                                          message below. In THIS CONTEXT ONLY, you can ignore it.
! (no SAVEDATA needed)
                                                                          WARNING: THE LATENT VARIABLE COVARIANCE MATRIX (PSI) IS NOT POSITIVE
MODEL: ! (To be changed below for each model)
                                                                          DEFINITE. THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE
                                                                          FOR A LATENT VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN
! 5 Factors (loadings for first item are estimated)
                                                                          TWO LATENT VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO
! 12-Item Spurning
                                                                          LATENT VARIABLES. CHECK THE TECH4 OUTPUT FOR MORE INFORMATION.
 Spurn BY p06* p10* p14* p25* p27* p29* p33* p35* p48* p49* p53* p54*;
                                                                          PROBLEM INVOLVING VARIABLE TERROR.
! 9-Item Terrorizing
 Terror BY p07* p11* p13* p17* p24* p26* p36* p55* p56*;
                                                                          MODEL FIT INFORMATION
! 6-Item Isolating
                                                                          Number of Free Parameters
                                                                                                                         245
 Isolate BY p01* p18* p19* p23* p39* p43*;
! 7-Item Corrupting
                                                                          Chi-Square Test of Model Fit
 Corrupt BY p09* p12* p16* p20* p28* p47* p50*;
                                                                                                                    7563.403*
                                                                                    Value
! 15-Item Ignoring
                                                                                                                       1127
                                                                                    Degrees of Freedom
 Ignore BY p02* p03* p04* p21* p22* p30* p31* p37* p40* p44*
                                                                                    P-Value
                                                                                                                      0.0000
           p45* p46* p51* p52* p57*;
                                                                          Chi-Square Test for Difference Testing
! Factor Variances (all must be fixed to 1 for identification)
                                                                                                                     769.754*
 Spurn@1 Terror@1 Isolate@1 Corrupt@1 Ignore@1;
                                                                                    Degrees of Freedom
! Factor Means (all fixed = 0 by default)
                                                                                                                          10
                                                                                    P-Value
                                                                                                                      0.0000
 [Spurn@0 Terror@0 Isolate@0 Corrupt@0 Ignore@0];
! Factor Covariance (all fixed to 1 to create 1-factor model)
                                                                          RMSEA (Root Mean Square Error Of Approximation)
 Spurn Terror Isolate Corrupt Ignore WITH
                                                                                    Estimate
                                                                                                                       0.065
 Spurn@1 Terror@1 Isolate@1 Corrupt@1 Ignore@1;
                                                                                    90 Percent C.I.
                                                                                                                      0.064 0.067
                                                                                    Probability RMSEA <= .05
                                                                                                                       0.000
#free parameters = 245 = 49 loadings + 49*4=196 thresholds
                                                                          CFI/TLI
   + 0 factor variances + 0 factor covariances = 245 parms USED
                                                                                    CFI
                                                                                                                       0.903
                                                                                                                       0.898
Possible = 49*50/2 + 49*4 = 1421
                                                                          SRMR (Standardized Root Mean Square Residual)
DF =1117 calculation: 1421 – 245 – 49 "residual variances" = 1127
                                                                                    Value
                                                                                                                       0.068
                                                                          Do we have one factor or five factors?
                                                                          According to the DIFFTEST relative to the previous 5-factor model:
                                                                          \chi^2(10) = 769.754, p < .0001
                                                                          Therefore, one factor does not capture the covariances for these 49 items.
```

Five factors (as hypothesized) does a significantly better job.

Syntax for IFA model with WLSMV and a higher-order factor instead of correlations among 5 factors ("smaller/bigger model" for comparison):

```
ANALYSIS:
           ESTIMATOR IS WLSMV:
                                       ! Limited info estimator
            PARAMETERIZATION IS THETA;
           DIFFTEST=5factor.dat;
                                      ! Test fit against saturated
SAVEDATA: DIFFTEST=HigherOrder.dat; ! Save fit of higher-order model
MODEL: ! (To be changed below for each model)
! 5 Lower-Order Factors (loadings for first item NOW FIXED =1)
! 12-Item Spurning
 Spurn BY p06@1 p10* p14* p25* p27* p29* p33* p35* p48* p49* p53* p54*;
! 9-Item Terrorizing
 Terror BY p07@1 p11* p13* p17* p24* p26* p36* p55* p56*;
! 6-Item Isolating
 Isolate BY p01@1 p18* p19* p23* p39* p43*;
! 7-Item Corrupting
 Corrupt BY p09@1 p12* p16* p20* p28* p47* p50*;
! 15-Item Ignoring
 Ignore BY p02@1 p03* p04* p21* p22* p30* p31* p37* p40* p44*
           p45* p46* p51* p52* p57*;
! Factor Variances (all must be free - NOW ARE "DISTURBANCES")
 Spurn* Terror* Isolate* Corrupt* Ignore*;
! Factor Means (all fixed = 0 by default)
 [Spurn@0 Terror@0 Isolate@0 Corrupt@0 Ignore@0];
! Higher-Order Factor (estimate higher-order factor loadings)
 Abuse BY Spurn* Terror* Isolate* Corrupt* Ignore*;
! Fix higher-order factor mean=0 & variance=1
 [Abuse@0]; Abuse@1;
```

We can use DIFFTEST to test the fit of the higher-order factor model against the saturated structural model with all possible factor correlations. This higher-order factor model uses 5 fewer parameters: 5 higher-order loadings replace the 10 covariances among the factors. The difference is $\chi^2(5) = 92.048$, p < .0001.

So trying to reproduce the 5 factor covariances with a single higher-order factor results in a significant decrease in fit. Why might this be the case? All the lower-order factors have large (enough) standardized loadings...

<u>NOTE:</u> With respect to fit of the structural model, we are now fitting a single higher-order factor INSTEAD OF covariances among the 5 factors.

```
MODEL FIT INFORMATION
Number of Free Parameters
                                              250
Chi-Square Test of Model Fit
                                         5941.909*
         Value
         Degrees of Freedom
                                            1122
         P-Value
                                           0.0000
Chi-Square Test for Difference Testing
                                           92.048*
         Degrees of Freedom
         P-Value
                                           0.0000
RMSEA (Root Mean Square Error Of Approximation)
                                            0.057
         Estimate
         90 Percent C.I.
                                            0.055 0.058
         Probability RMSEA <= .05
                                          0.000
CFT/TLT
         CFI
                                            0.927
         TIT
                                            0.924
SRMR (Standardized Root Mean Square Residual)
                                            0.057
#free parameters = 250 = 44 loadings + 49*4=196 thresholds
```

#free parameters = 250 = 44 loadings + 49*4=196 thresholds + 5 factor variances + 5 higher-order loadings = 250 parms USED

Possible = 49*50/2 + 49*4 = 1421 DF =1117 calculation: 1421 – 250 – 49 "residual variances" = 1122

STDYX Standardization

					Two-Tailed
		Estimate	S.E.	Est./S.E.	P-Value
ABUSE	BY	(HIGHER-ORDER STANDA	RDIZED L	OADINGS)	
SPU	RN	0.990	0.005	204.056	0.000
TER	ROR	0.948	0.007	139.928	0.000
ISO	LATE	0.951	0.009	106.595	0.000
COR	RUPT	0.835	0.014	60.998	0.000
IGN	ORE	0.885	0.009	93.999	0.000

Higher-Order Factor Model Output; Comparison of Saturated versus Higher-Order Factor Model predicted correlations:

MODEL MO	DIFICATIO	ON INDICES			
Minimum	M.I. valu	e for printing	the modifica	tion index	3.840
		M	.I. E.P.C	. Std E.P.C	. StdYX E.P.C.
TERROR	WITH SPU	JRN 8.	776 0.011	0.558	0.558
ISOLATE	WITH SPU	JRN 11.	742 -0.014	-0.742	-0.742
ISOLATE	WITH TEF	RROR 5.	966 -0.012	-0.256	-0.256
CORRUPT	WITH SPU	JRN 39.	197 -0.028	-0.762	-0.762
CORRUPT	WITH TER	RROR 122.	582 0.056	0.627	0.627
IGNORE	WITH SPU	JRN 25.	0.021	0.596	0.596
IGNORE	WITH TER	RROR 82.	830 -0.040	-0.471	-0.471
IGNORE	WITH ISC	DLATE 42.	439 0.031	0.372	0.372
IGNORE	WITH COF	RRUPT 6.	036 -0.013	-0.077	-0.077

Based on the modification indices (which are picking up on the discrepancies between the saturated model and higher-order factor model in the factor correlations, it appears we need to allow two more relationships among the factor disturbances, as follows:

```
! Limited info estimator
ANALYSIS: ESTIMATOR IS WLSMV;
            PARAMETERIZATION IS THETA:
            DIFFTEST=5factor.dat;
                                   ! Test fit against saturated
SAVEDATA: DIFFTEST=HigherOrder2.dat; ! Save fit of higher-order2 model
MODEL: ! (To be changed below for each model)
! 5 Lower-Order Factors (loadings for first item NOW FIXED =1)
! 12-Item Spurning
  Spurn BY p06@1 p10* p14* p25* p27* p29* p33* p35* p48* p49* p53* p54*;
! 9-Item Terrorizing
 Terror BY p07@1 p11* p13* p17* p24* p26* p36* p55* p56*;
! 6-Item Isolating
 Isolate BY p01@1 p18* p19* p23* p39* p43*;
! 7-Item Corrupting
 Corrupt BY p09@1 p12* p16* p20* p28* p47* p50*;
! 15-Item Ignoring
  Ignore BY p02@1 p03* p04* p21* p22* p30* p31* p37* p40* p44*
           p45* p46* p51* p52* p57*;
! Factor Variances (all must be free - NOW ARE "DISTURBANCES")
  Spurn* Terror* Isolate* Corrupt* Ignore*;
! Factor Means (all fixed = 0 by default)
  [Spurn@0 Terror@0 Isolate@0 Corrupt@0 Ignore@0];
! Higher-Order Factor (estimate higher-order factor loadings)
 Abuse BY Spurn* Terror* Isolate* Corrupt* Ignore*;
! Fix higher-order factor mean=0 & variance=1
  [Abuse@0]; Abuse@1;
! Add disturbance covariances suggested by voo-doo
  Corrupt WITH Terror*;
  Ignore WITH Terror*;
```

	WLSMV S	olutions					
Saturated:	5-Factor A	II Covarian	ces Model				
SPURN	TERROR	ISOLATE	CORRUPT	IGNORE			
1.000							
.947	1.000						
.925	.885	1.000					
.791	.866	.776	1.000				
.882	.817	.863	.729	1.000			
	TERROR	ISOLATE	CORRUPT	IGNORE			
.826	.791	.794	1.000				
.876	.839	.841	.738	1.000			
Discrepancy: Saturated - Predicted 1							
SPURN	TERROR	ISOLATE	CORRUPT	IGNORE			
.009							
016	017						
035	.075	018					
.006	022	.022	009				
2: 5-Factor	+ Higher-C	Order Facto	r + 2 Fact (Cov Mode			
SPURN	TERROR	ISOLATE	CORRUPT	IGNORE			
1.000							
.939	1.000						
.927	.907	1.000					
.792	.866	.765	1.000				
.885	.817	.855	.730	1.000			
Discrepa	ancy: Satur	ated - Pred	dicted 2				
SPURN	TERROR	ISOLATE	CORRUPT	IGNORE			
000							
.006							
002	022						
	- .022 .000	.011					
	SPURN 1.000 .947 .925 .791 .882 licted 1: 5- SPURN 1.000 .938 .941 .826 .876 Discrepa SPURN .009016035 .006 2: 5-Factor SPURN 1.000 .939 .927 .792 .885 Discrepa SPURN	Saturated: 5-Factor A SPURN TERROR 1.000 .947 1.000 .925 .885 .791 .866 .882 .817 SPURN TERROR 1.000 .938 1.000 .941 .902 .826 .791 .876 .839 Discrepancy: Satur SPURN TERROR .009 016017 035 .075 .006022 2: 5-Factor + Higher-C SPURN TERROR 1.000 .939 1.000 .939 1.000 .927 .907 .792 .866 .885 .817	SPURN TERROR ISOLATE	Saturated: 5-Factor All Covariances Model SPURN TERROR ISOLATE CORRUPT 1.000 .947 1.000 .925 .885 1.000 .882 .817 .863 .729 licted 1: 5-Factor + Higher-Order Factor Model SPURN TERROR ISOLATE CORRUPT 1.000 .938 1.000 .941 .902 1.000 .826 .791 .794 1.000 .876 .839 .841 .738 Discrepancy: Saturated - Predicted 1 SPURN TERROR ISOLATE CORRUPT .009016017035 .075018 .006022 .022009 2: 5-Factor + Higher-Order Factor + 2 Factor SPURN TERROR ISOLATE CORRUPT 1.000 .939 1.000 .939 1.000 .927 .907 1.000 .792 .866 .765 1.000 .885 .817 .855 .730 Discrepancy: Saturated - Predicted 2 SPURN TERROR ISOLATE CORRUPT			

CLDP 948 Example 8 page 12

MODEL FI	T INFORMATION				
Number o	f Free Paramet	ers		252	
Chi-Squa	re Test of Mod	del Fit			
	Value			5853.778*	
	Degrees of E	reedom		1120	
	P-Value	recaom		0.0000	
	1 Value			0.0000	
Chi-Smia	re Test for Di	fference	Testing		
CIII bqua	Value	rrerence	rescring	8.483*	
	Degrees of E	Treedom		3	
	P-Value	reedom		0.0370	
	r value			0.0370	
DMCEA (D	oot Mean Squar	o Error O	f Annrowi	mation)	
MISEA (N	Estimate	e Ellor o	I APPIOXI	0.056	
		· -			0 050
	90 Percent C		0.5		0.058
	Probability	RMSEA <=	.05	0.000	
an- /m					
CFI/TLI					
	CFI			0.928	
	TLI			0.925	
SRMR (St	andardized Roc	ot Mean Sq	uare Resi		
	Value			0.056	
STDYX St	andardization				
					Two-Tailed
	Es	stimate	S.E.	Est./S.E.	P-Value
ABUSE	BY (HIGHER-OF	RDER STAND	ARDIZED L	OADINGS)	
SPUR	N	0.980	0.006	173.657	0.000
TERR	OR	0.959	0.007	130.093	0.000
ISOL	ATE	0.946	0.009	105.339	0.000
CORR	UPT	0.809	0.015	54.055	0.000
IGNO	RE	0.903	0.009	97.384	0.000
CORRUPT	' WITH				
TERR	OR	0.544	0.068	7.983	0.000
	WITH				
TERR		-0.406	0 102	-3.991	0.000
T LITTE	OIC	0.100	0.102	3.331	0.000
MODET MO	DIFICATION IND	TCES			
	M.I. value for		the modi	fication in	10v 3 840
PITITIMUM	m.i. value ioi	. princing	che modi	.IICacion in	J.040
		M.I.	E D C	C+4 F D C	StdYX E.P.C.
		M·T.	E.P.C.	sta E.P.C.	SLUIX E.P.C.
		10 404	0 001	0 755	0 755
TERROR	WITH SPURN	13.424	0.031	0.757	0.757
ISOLATE		13.420	-0.036	-0.454	-0.454
IGNORE		5.964	-0.029	-0.271	-0.271
IGNORE	WITH ISOLATE	8.177	0.039	0.186	0.186

It looks like we could add a 1-2 more covariances to ensure not worse fit than the saturated (all 10 correlations) model, but which should be added seems somewhat arbitrary... Two comparisons are relevant. First, did we help the higher-order factor model by adding two covariances among the factor disturbances? This comparison is not shown here, but yes, $\chi^2(2) = 88.343$, p < .0001, so yes, model fit is better. Second, does the revised higher-order factor model fit nonsignificantly worse than the saturated structural model with all 10 correlations among the 5 factors? Almost: $\chi^2(3) = 8.483$, p = .0370. So our revised model almost captures those 10 correlations using 3 fewer parameters (5 loadings + 2 covariances).

Example results section for IFA using WLSMV:

After examining the fit of each of the five factors individually, as described previously, a combined model was estimated in which all five factors were fit simultaneously with covariances estimated freely among them. A total of 49 items were thus included. WLSMV estimation (i.e., diagonally weighted least squares) in Mplus v 8.1 including a probit link and the THETA parameterization (such that all item residual variances were constrained to 1) was used to estimate all models (Muthén & Muthén, 1998–2017). Thus, model fit statistics describe the fit of the item factor model to the polychoric correlation matrix among the items. The fit of each model referenced below is shown in Table 1. Nested model comparisons were conducted using the Mplus DIFFTEST procedure.

We first established the need for 5 factors by showing a significant decrease in fit for a single-factor model relative to that of the 5-factor model, $\chi^2(10) = 769.754$, p < .0001. As shown in Table 1, the fit of the model with five correlated factors was marginally acceptable by both the RMSEA (.057) and the CFI (.927). Standardized model parameters (loadings, intercepts, and residual variances) are shown in Table 2. Correlations of .7 or higher were found amongst the five factors, suggesting evidence that the five factors may indicate a single higher-order factor. This idea was testing by eliminating the covariances among the factors and instead estimating loadings for the five factors from a single higher-order factor (whose variance was fixed to 1). Although the fit of the higher-order factor model remained marginal (see Table 1), a nested model comparison revealed a significant decrease in fit, $\chi^2(5) = 92.048$, p < .0001, indicating that a single factor did not appear adequate to describe the pattern of correlation amongst the five factors. Inspection of the discrepancy between the factor correlations from the 5-factor model and those predicted by the higher-order factor indicated two sources of misfit—the correlation between Corrupt and Terror was under-estimated, whereas the correlation between Ignore and Terror was overestimated. These discrepancies were captured via two additional covariances among those lower-order factor disturbances, resulting in a significant improvement in fit, χ^2 (2) = 88.343, p < .0001. However, the revised model did not completely account for the pattern of correlation among the 5 factors, as indicated by a significant decrease in model fit relative to the model with all 10 factor correlations estimated directly, $\chi^2(3)$ = 8.483, p = .0370.