Review of CLDP 944: Multilevel Models for Longitudinal Data

- Topics:
 - Review of general MLM concepts and terminology
 - Model comparisons and significance testing
 - Fixed and random effects of time
 - > Significance testing and effect size in MLM

What is a Multilevel Model (MLM)?

- Same as other terms you have heard of:
 - General(*ized*) Linear Mixed Model (if you are from statistics)
 - *Mixed* = Fixed and Random effects
 - Random Coefficients Model (also if you are from statistics)
 - Random coefficients = Random effects = latent variables/factors
 - > Hierarchical Linear Model (if you are from education)
- MLM is for modeling **dependency**. Special cases include:
 - > Random Effects ANOVA or Repeated Measures ANOVA
 - > (Latent) Growth Curve Model (where "Latent" implies use of SEM)
 - > Within-Person Fluctuation Model (e.g., for daily diary data)
 - Clustered/Nested Observations Model (e.g., for kids in schools)
 - > Cross-Classified Models (e.g., "value-added" models)
 - > Psychometric Models (e.g., factor analysis, item response theory)

The Two Sides of *Any* Model

Model for the Means:

- > Aka Fixed Effects, Structural Part of Model
- > What you are used to **caring about for testing hypotheses**
- How the expected outcome for a given observation varies as a function of values on predictor variables

Model for the Variance:

- > Aka Random Effects and Residuals, Stochastic Part of Model
- What you *were* used to making assumptions about instead
- ➤ How residuals are distributed and related across observations (persons, groups, time, etc.) → these relationships are called "dependency" and this is the primary way that multilevel models differ from general linear models (e.g., regression)

For Example: A Single-Level (BP) Model

$$y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + \beta_3 X_i Z_i + e_i$$

• <u>Model for the Means (→Predicted Values)</u>:

- Each person's expected (predicted) outcome is a weighted linear function of his/her values on X and Z (and here, their interaction), each measured once per person (i.e., this is a between-person model)
- Estimated parameters are called **fixed effects** (here, β_0 , β_1 , β_2 , and β_3)
- Model for the Variance (→ "Piles" of Variance):
 - e_i ~ N(0, σ_e²) → ONE residual (unexplained) deviation, so
 estimated parameter is residual variance in single-level (BP) model
 - e_i residuals have a mean of 0 with some estimated **constant variance** σ_e^2 , are **normally distributed**, are unrelated to X and Z, and are **independent** across all observations
 - We should change models when any of these assumptions do not hold...

Models We Will Learn in CLDP 945

- <u>Outcome type</u>: General (normal) vs. General*ized* (not normal)
- <u>Dimensions of sampling</u>: One (so one variance term per outcome) vs.
 Multiple (so multiple variance terms per outcome) → OUR WORLD
- <u>General Linear Models</u>: conditionally normal outcome distribution, fixed effects (identity link; only one dimension of sampling)

Note: Least Squares is only for GLM

- <u>Generalized Linear Models</u>: any conditional outcome distribution, fixed effects through link functions, no random effects (one dimension)
- <u>General Linear Mixed Models</u>: conditionally normal outcome distribution, fixed and random effects (identity link, but multiple sampling dimensions)
- <u>Generalized Linear Mixed Models</u>: any conditional outcome distribution, fixed and random effects through link functions (multiple dimensions)
 - > Many of the same concepts, but with more complexity in estimation
- "Linear" means fixed effects predict the *link-transformed* <u>conditional mean</u> of DV in a linear combination of (effect*predictor) + (effect*predictor)...

What kinds of designs will we analyze?

- "Longitudinal" data (still, but with more complexity)
 - Same individual units of analysis measured at different occasions (which could range from milliseconds to days to years)
 - > Accelerated longitudinal designs; multiple levels of "time"
 - > Multivariate models (e.g., for families, dyads, and mediation)
- "Repeated measures" (RM) data (not involving "time")
 - Same individual units of analysis measured via different *items*, using different *stimuli*, or under different *conditions*
- "Clustered" and "cross-classified" data
 - Same individual units of analysis (one or more kinds of groups) measured via different *people* (cross-sectionally or longitudinally)

Options for Modeling Dependency

- Many sampling designs have one or more sources/types of dependency, or correlation of observations from same unit
- Three main ways of building dependency into a model:
 - Fixed effects in the model for the means: add ID variable as a categorical predictor to represent differences across upper-level units
 - Main effects of ID represent intercept dependency; interactions of ID with lower-level predictors represent predictor-specific dependency
 - Does not allow prediction of why those differences occurred
 - Multivariate variance–covariance structures: for balanced longitudinal or repeated measures data; those using lags also require equal intervals
 - e.g., VC(H), CS(H), AR1(H), TOEP(H), or Unstructured (UN) as "answer key"
 - Can create a pattern of non-constant variance and covariance over time/RM
 - > Add one level (or more): add random intercept (and slope) variances
 - Can create multiple patterns of non-constant variance and covariance even with unbalanced data (longitudinal or clustered) → LET'S REVIEW THIS...

Two-Level Longitudinal Data

- <u>Between-Person (BP) Variation:</u>
 - Level 2 "INTER-individual Differences" Time-Invariant
 - > All longitudinal studies begin as cross-sectional studies
- <u>Within-Person (WP) Variation</u> over Time:
 - Level 1 "INTRA-individual Differences" Time-Varying
 - > Only longitudinal studies can provide this extra information
- Longitudinal studies allow examination of both types of relationships simultaneously (and their interactions)
 - > Any variable measured over time usually has both BP and WP variation
 - > BP = more/less than other people; WP = more/less than one's average
- I use "person" here, but level 2 can be any entity that is measured repeatedly (like animals, schools, houses, countries...)

Characterizing Longitudinal Data

- What should "time" be?
 - > e.g., time in study, age, grade, time from event/diagnosis
- Does time vary both **within-** AND **between-persons**?
 - > Model will need to differentiate each level of time effect
 - > Often known as "accelerated" longitudinal designs
- Is time balanced or unbalanced?
 - Balanced = everyone has a shared measurement schedule
 - Some people may miss occasions, making their data "incomplete"
 - > Unbalanced = people have different possible "time" values
 - By definition, observations are "incomplete" across persons
 - This is a consequence of any time metric varying between persons

Characterizing Longitudinal Data

Role of "Time" in the Model for the Means:

- WP Change \rightarrow describe pattern of *average* change (e.g., growth curves)
- WP Fluctuation → describe average time-specific trends that may not have been expected (e.g., reactivity, day of the week, circadian/schedule effects)

Role of "Time" in the Model for the Variance:

- WP Change → describe *individual differences* in change (random effects)
 → this allows variances and covariances to differ over time
- WP Fluctuation \rightarrow describe pattern of variance and covariance over time

ANOVA for two-level longitudinal data?

- There are 3 possible "kinds" of ANOVAs we could use:
 - > Between-Persons/Groups, Univariate RM, and Multivariate RM

• NONE OF THEM ALLOW:

- > **Missing occasions** (do listwise deletion when using least squares)
- > Time-varying predictors (covariates are BP predictors only)
- Each includes the same model for the means for time: all possible mean differences (so 4 parameters to get to 4 means)
 - > "Saturated means" model for *Time*: $\beta_0 + \beta_1(T_1) + \beta_2(T_2) + \beta_3(T_3)$
 - > The *Time* variable must be balanced and discrete in ANOVA!
- These ANOVAs differ by what they predict for the correlation across outcomes from the same person in the model for the variance...
 - i.e., how they "handle dependency" due to persons, or what they says the variance and covariance of the y_{ti} residuals should look like...

Summary: ANOVA models for longitudinal data are like "one size fits most"

- Saturated Model for the Means (balanced time required)
 - > All possible mean differences across time
 - > Unparsimonious, but best-fitting (is a description of the complete data)
- 3 kinds of Models for the Variance (need complete data in least squares)
 - > BP ANOVA (σ_e^2 only; **VC**) → independence and constant variance over time
 - > Univ. RM ANOVA $(\tau_{U_0}^2 + \sigma_e^2; \mathbf{CS}) \rightarrow$ constant variance and covariance over time
 - > Multiv. RM ANOVA (**unstructured**) \rightarrow is a description of the (complete) data

there is no structure that shows up in a scalar equation (i.e., the way $U_{0i} + e_{ti}$ does)

- MLM will give us more flexibility in both parts of the model:
 - > Fixed effects that *predict* the pattern of means over time (polynomials, pieces)
 - Random intercepts and slopes and/or alternative covariance structures that predict intermediate patterns of variance and covariance over time

An Empty Between-Person Model (i.e., Single-Level)

13

"Error" in a BP Model for the Variance: Single-Level Model

Adding Within-Person Information... (i.e., to become a Two-Level Model)

Full Sample Distribution 3 People, 5 Occasions each

CLDP 945: Lecture I

Empty +Within-Person Model

y_{ti} variance (V) \rightarrow 2 sources:

<u>Level-2 Random Intercept</u> <u>// Variance</u> (of U_{0i}, as $\tau_{U_0}^2$):

Between-Person Variance in **G** Differences from **GRAND** mean

INTER-Individual Differences

<u>Level-1 Residual Variance</u> (of e_{ti} , as σ_e^2):

- → Within-Person Variance in R
- → Differences from **OWN** mean
- → **INTRA**-Individual Differences

"Error" in a +WP Model for the Variance: Multilevel Model

BP vs. +WP Empty Models

• Empty Between-Person Model (used for 1 occasion):

 $y_i = \beta_0 + e_i$

- > β_0 = fixed intercept = grand mean
- e_i = residual deviation from GRAND mean
- Empty +Within-Person Model (for >1 occasions):

$y_{ti} = \beta_0 + U_{0i} + e_{ti}$

- > β_0 = fixed intercept = grand mean
- > **U**_{0i} = random intercept = individual deviation from GRAND mean
- e_{ti} = time-specific residual deviation from OWN mean

Same Model Using Multilevel Notation: Empty Means, Random Intercept Model

GLM Empty Model:

- y_i = β₀ + e_i
- MLM Empty Model:
- Level 1:

 $y_{ti} = \beta_{0i} + e_{ti}$

• Level 2:

 $\beta_{0i} = \gamma_{00} + \mathbf{U}_{0i}$

Fixed Intercept = mean of means (=mean because no predictors yet) Random Intercept = individual-specific deviation from predicted intercept

3 Parameters: Model for the Means (1):

Fixed Intercept γ₀₀

Model for the Variance (2):

• Level-1 Variance of
$$e_{ti}
ightarrow \sigma_e^2$$

• Level-2 Variance of
$$U_{0i} \rightarrow \tau_{U_0}^2$$

<u>Residual</u> = time-specific deviation from individual's predicted outcome

> Composite equation: $y_{ti} = (\gamma_{00} + U_{0i}) + e_{ti}$

Intraclass Correlation (ICC)

Intraclass Correlation (ICC):

$$ICC = \frac{BP}{BP + WP} = \frac{Intercept Var.}{Intercept Var. + Residual Var.} = \frac{\tau_{U_0}^2}{\tau_{U_0}^2 + \sigma_e^2}$$
$$Corr(y_1, y_2) = \frac{Cov(y_1, y_2)}{\sqrt{Var(y_1)} * \sqrt{Var(y_2)}} \begin{bmatrix} V \text{ matrix } VCORR \text{ Matrix} \\ \begin{bmatrix} \sigma_e^2 + \tau_{u_0}^2 & \tau_{u_0}^2 & \tau_{u_0}^2 \\ \tau_{u_0}^2 & \sigma_e^2 + \tau_{u_0}^2 & \tau_{u_0}^2 \end{bmatrix} \begin{bmatrix} 1 & ICC & ICC \\ ICC & 1 & ICC \\ ICC & ICC \end{bmatrix}$$

- ICC = Proportion of total variance that is between persons
- ICC = Correlation of occasions from same person (in VCORR)
- ICC is a standardized way of expressing how much we need to worry about *dependency due to person mean differences* (i.e., ICC is an effect size for <u>constant</u> person dependency)

Augmenting the empty means, random intercept model with *time*

• 2 questions about the possible effects of *time*:

1. Is there an effect of time on average?

- > If the line describing the sample means not flat?
- > Significant FIXED effect of time

2. Does the average effect of time vary across individuals?

- > Does each individual need his or her own line?
- > Significant RANDOM effect of time

Fixed and Random Effects of Time

(Note: The intercept is random in every figure)

CLDP 945: Lecture I

B. Fixed Linear Time, Random Intercept Model (4 parameters: effect of time is FIXED only)

C or D: Random Linear Time Model (6 parms)

CLDP 945: Lecture I

Random Linear Time Model

CLDP 945: Lecture I

Summary: Sequential Models for Effects of Time

Level 1: $\mathbf{y}_{ti} = \mathbf{\beta}_{0i} + \mathbf{e}_{ti}$ Level 2: $\mathbf{\beta}_{0i} = \mathbf{\gamma}_{00} + \mathbf{U}_{0i}$ Composite: $\mathbf{y}_{ti} = \mathbf{\gamma}_{00} + \mathbf{U}_{0i} + \mathbf{e}_{ti}$ Empty Means, Random Intercept Model: 3 parms = γ_{00} , σ_e^2 , $\tau_{U_0}^2$

Level 1: $y_{ti} = \beta_{0i} + \beta_{1i} (Time_{ti}) + e_{ti}$	Fixed Linear Time,
Level 2: $\beta_{0i} = \gamma_{00} + U_{0i}$	Random Intercept Model:
$\beta_{1i} = \gamma_{10}$	4 parms = γ_{00} , γ_{10} , σ_e^2 , $\tau_{U_0}^2$

Composite: $y_{ti} = (\gamma_{00} + U_{0i}) + \gamma_{10}(Time_{ti}) + e_{ti}$

Level 1: $\mathbf{y}_{ti} = \mathbf{\beta}_{0i} + \mathbf{\beta}_{1i}(\mathsf{Time}_{ti}) + \mathbf{e}_{ti}$ Level 2: $\mathbf{\beta}_{0i} = \mathbf{\gamma}_{00} + \mathbf{U}_{0i}$ $\mathbf{\beta}_{1i} = \mathbf{\gamma}_{10} + \mathbf{U}_{1i}$ Random Linear Time Model: 6 parms = $\mathbf{\gamma}_{00}, \mathbf{\gamma}_{10}, \sigma_{e}^{2}, \tau_{U_{0}}^{2}, \tau_{U$

Composite: $y_{ti} = (\gamma_{00} + U_{0i}) + (\gamma_{10} + U_{0i})(Time_{ti}) + e_{ti}$

Random Linear Time Models Imply:

- People differ from each other systematically in TWO ways—in intercept (U_{0i}) and slope (U_{1i}), which implies TWO kinds of BP variance, which translates to TWO sources of person dependency (covariance or correlation in the outcomes from the same person)
- If so, after controlling for both BP intercept and slope differences (by estimating the $\tau_{U_0}^2$ and $\tau_{U_1}^2$ variances in the **G** matrix), the **e**_{ti} **residuals** (whose variance and covariance are estimated in the R matrix) should be **uncorrelated with homogeneous variance across time**, as shown (or else a different **R** matrix is needed):

Level	-2	Level-1 R matrix:				
G mat	rix:	REPEATED TYPE=V			E=VC	
RAND	MC	[σ^2	0	0	0]
TYPE=	UN		° e	2	ů O	
$\int \tau^2$	-]		0	σ_{e}^{-}	0	0
	U ₁₀		0	0	σ_e^2	0
$\tau_{U_{01}}$	$\tau^2_{U_1}$		0	0	0	σ_e^2

G and R combine to create a total
V matrix whose per-person
structure depends on the specific
time occasions for each person in
Z (flexible for unbalanced time)

What Does Each Side of the Model Need?

- Nested models (i.e., in which one is a subset of the other) can now differ from each other in two important ways
- Model for the Means → which predictors and which fixed effects of them are included in the model
 - <u>Does not</u> require assessment of relative model fit using LL or -2LL (can use univariate or multivariate Wald tests for this)
- Model for the Variance → what the pattern of variance and covariance of residuals from the same unit should be
 - ▹ DOES require assessment of relative model fit using LL or −2LL
 - Cannot use the Wald test *p*-values that show up on the output for testing significance of variances because those *p*-values are use a two-sided sampling distribution for what the variance could be (but variances cannot be negative, so those *p*-values are not valid)

Testing Significance of Fixed Effects (of Predictors) in the Model for the Means

- Any single-df **fixed effect** has 4-5 relevant pieces of output:
 - Estimate = best guess for the fixed effect from our data
 - Standard Error = precision of fixed effect estimate (quality of most likely estimate)
 - *t*-value or *z*-value = Estimate / Standard Error
 - > *p***-value** = probability that fixed effect estimate is $\neq 0$
 - > 95% Confidence Interval = Estimate ± 1.96*SE = range in which true (population) value of estimate is expected to fall 95% of the time
- Compare test statistic (t or z) to critical value at chosen level of significance (known as alpha): this is a "univariate Wald test"
- Whether the *p*-value is based on *t* or *z* varies by program...

Evaluating Significance of Fixed Effects

Fixed effects can be tested via **Wald** tests: the ratio of its estimate/SE forms a statistic we compare to a distribution

	Denominator DF is infinite (Proper Wald test)	Denominator DF is estimated instead ("Modified" Wald test)
Numerator DF = 1 (test one fixed effect) is Univariate Wald Test	use z distribution (Mplus, STATA)	use t distribution (SAS, SPSS)
Numerator DF > 1 (<i>test 2</i> + <i>fixed effects</i>) is Multivariate Wald Test	use χ² distribution (Mplus, STATA)	use F distribution (SAS, SPSS)
Denominator DF options	not applicable, so DDF is not given	SAS, STATA 14: BW, KR SAS, STATA 14, SPSS: Satterthwaite

Evaluating Effect Size of Fixed Effects

- Most common measure of effect size in MLM is Pseudo-R²
 - > Is supposed to be variance accounted for by predictors
 - Multiple piles of variance mean multiple possible values of pseudo R² (can be calculated per variance component or per model level)
 - > A fixed linear effect of time will reduce level-1 residual variance σ_e^2 in ${\bm R}$
 - > By how much is the residual variance σ_e^2 reduced?

Pseudo $R_e^2 = \frac{\text{residual variance}_{\text{fewer}} - \text{residual variance}_{\text{more}}}{\text{residual variance}_{\text{fewer}}}$

> If time varies between persons, then level-2 random intercept variance $\tau_{U_0}^2$ in **G** may also be reduced:

Pseudo $R_{U0}^2 = \frac{\text{random intercept variance}_{\text{fewer}} - \text{random intercept variance}_{\text{more}}}{\text{random intercept variance}_{\text{fewer}}}$

> But you are likely to see a (net) INCREASE in $\tau_{U_0}^2$ instead.... Here's why:

Increases in Random Intercept Variance

- Level-2 random intercept variance $\tau_{U_0}^2$ will often increase as a consequence of reducing level-1 residual variance σ_e^2
- Observed level-2 $\tau_{U_0}^2$ is NOT just between-person variance
 - > Also has a small part of within-person variance (level-1 σ_e^2), or: **Observed** $\tau_{U_0}^2$ = **True** $\tau_{U_0}^2$ + (σ_e^2/n)
 - As *n* occasions increases, bias of level-1 σ_e^2 is minimized
 - > Likelihood-based estimates of "true" $\tau_{U_0}^2$ use (σ_e^2/n) as correction factor: **True** $\tau_{U_0}^2$ = **Observed** $\tau_{U_0}^2$ – (σ_e^2/n)
- For example: observed level-2 $\tau_{U_0}^2$ =4.65, level-1 σ_e^2 =7.06, n=4
 - > True $\tau_{U_0}^2$ = 4.65 (**7.60**/4) = **2.88** in empty means model
 - > Add fixed linear time slope \rightarrow reduce σ_e^2 from 7.06 to 2.17 (R² = .69)
 - > But now True $\tau_{U_0}^2 = 4.65 (2.17/4) = 4.10$ in fixed linear time model

Significance Tests for Choosing Models for the Variance

- Requires assessment of **relative model fit**: how well does the model fit relative to other possible models?
 - > Assessment of *absolute* model fit is only possible for balanced data
- Relative fit is indexed by overall model log-likelihood (LL):
 - > Log of likelihood for each person's outcomes given model parameters
 - Sum log-likelihoods across all independent persons = model LL
 - > Two flavors: Maximum Likelihood (ML) or Restricted ML (REML)
- What you get for this on your output varies by software...
- Given as -2*log likelihood (-2LL) in SAS or SPSS MIXED:
 -2LL gives BADNESS of fit, so smaller value = better model
- Given as just log-likelihood (LL) in STATA MIXED and Mplus:
 LL gives GOODNESS of fit, so bigger value = better model

Comparing Models for the Variance

• Two strategies for choosing a model for the variance:

- > Does the more complex model fit better (than a simpler model)?
- Does the simpler model fit worse (than a more complex model)?
- Nested models are compared using a "likelihood ratio test":
 -2ΔLL test (aka, "χ² test" in SEM; "deviance difference test" in MLM)

"fewer" = from model with fewer parameters "more" = from model with more parameters Results of 1. & 2. must be positive values!

- 1. Calculate -2 Δ LL: if given -2LL, do -2 Δ LL = (-2LL_{fewer}) (-2LL_{more}) if given LL, do -2 Δ LL = -2 *(LL_{fewer} - LL_{more})
- 2. Calculate $\Delta df = (\# Parms_{more}) (\# Parms_{fewer})$
- 3. Compare $-2\Delta LL$ to χ^2 distribution with df = Δdf
- 4. Get *p*-value from CHIDIST in excel or LRTEST option in STATA

Comparing Models for the Variance

- What your *p*-value for the $-2\Delta LL$ test means:
 - > If you ADD parameters, then your model can get better (if −2ΔLL test is significant) or not better (not significant)
 - > If you **REMOVE** parameters, then your model can get **worse** (if −2ΔLL test is significant) or **not worse** (not significant)
- Nested or non-nested models can also be compared by Information Criteria that also reflect model parsimony
 - > No significance tests or critical values, just "smaller is better"
 - > **AIC** = Akaike IC = -2LL + 2*(# parameters)
 - > **BIC** = Bayesian IC = $-2LL + \log(N)^*(\# parameters)$
 - > What "parameters" means depends on flavor (except in stata):
 - ML = ALL parameters; REML = variance model parameters only

Flavors of Maximum Likelihood

- Remember that Maximum likelihood comes in two flavors:
- "Restricted (or residual) maximum likelihood"
 - Only available for general linear models or general linear mixed models (that assume normally distributed residuals)
 - > Is same as LS given complete outcomes, but it doesn't require them
 - > Estimates variances the same way as in LS (accurate) $\rightarrow \frac{\sum(y_i y_{pred})^2}{N k}$
- "Maximum likelihood" (ML; also called FIML*)
 - Is more general, is available for the above plus for non-normal outcomes and latent variable models (CFA/SEM/IRT)
 - > Is NOT the same as LS: it under-estimates variances by $\frac{\sum(y_i y_{pred})^2}{N}$ not accounting for the # of estimated fixed effects $\rightarrow \frac{N}{N}$
- *FI = Full information \rightarrow it uses all original data (they both do)

Flavors of Full-Information Maximum Likelihood

- <u>Restricted maximum likelihood</u> (**REML**; used in MIXED)
 - Provides unbiased variances
 - > Especially important for small N (< 100 units)</p>
 - -2ΔLL test cannot be used to compare models differing in fixed effects (no biggee; we can do this using univariate or multivariate Wald tests)
 - **-2ΔLL test** MUST be used to compare different models for the variance
- Maximum likelihood (ML; also used in MIXED)
 - Variances (and SEs) are too small in small samples
 - Is only option in most software for path models and SEM
 - –2ΔLL test can be used to compare any nested model; must be used to compare different models for the variance

$$\frac{\sum(y_i - y_{pred})^2}{N}$$

 $\frac{\sum (y_i - y_{pred})^2}{\sum (y_i - y_{pred})^2}$ N - k

ML vs. REML in a nutshell

Remember "population" vs. "sample" formulas for calculating variance?		'Population'' $\frac{\Sigma(y_i - y_{pred})^2}{N}$	"Sample" $\frac{\Sigma(y_i - y_{pred})^2}{N - k}$		
All comparisons must have same N!!!	ML		REML		
To select, type	METHOD=ML (-2 log likelihood)		METHOD=REML <i>default</i> (-2 res log likelihood)		
In estimating variances, it treats fixed effects as	Known (df for having to also estimate fixed effects is not factored in)		Unknown (df for having to estimate fixed effects is factored in)		
So, in small samples, L2 variances will be	Too small (less difference after N=30-50 or so)		Too small (less difference after N=30-50 or so)		Unbiased (correct)
But because it indexes the fit of the	Entire model (means + variances)		Variances model only		
You can compare models differing in	Fixed and/or random effects (either/both)		Random effects only (same fixed effects)		

Rules for Comparing Models

All observations must be the same across models!

Compare Models Differing In:

Type of Comparison:	Means Model (Fixed) Only	Variance Model (Random) Only	Both Means and Variances Model (Fixed and Random)
<u>Nested?</u> YES, can do significance tests via	Fixed effect p-values from ML or REML OR ML –2ΔLL only (NO REML –2ΔLL)	NO <i>p</i> -values REML –2ΔLL (ML –2ΔLL is ok if big N)	ML –2ΔLL only (NO REML –2ΔLL)
Non-Nested? NO signif. tests, instead see	ML AIC, BIC (NO REML AIC, BIC)	REML AIC, BIC (ML ok if big N)	ML AIC, BIC only (NO REML AIC, BIC)

<u>Nested</u> = one model is a <u>direct subset</u> of the other

Non-Nested = one model is not a direct subset of the other

3 Decision Points for Model Comparisons

- 1. Are the models **nested** or **non-nested**?
 - > Nested: have to add OR subtract effects to go from one to other
 - Can conduct significance tests for improvement in fit
 - > Non-nested: have to add AND subtract effects
 - No significance tests available for these comparisons
- 2. Differ in model for the **means**, **variances**, or **both**?
 - > Means? Can only use $-2\Delta LL$ tests if ML (or *p*-value of each fixed effect)
 - > Variances? Can use ML (or preferably REML) -2Δ LL tests, no *p*-values
 - > Both sides? Can only use $-2\Delta LL$ tests if ML
- 3. Models estimated using **ML** or **REML**?
 - > ML: All model comparisons are ok
 - > REML: Model comparisons are ok for the variance parameters only

Effect Size for Random Effects Variances

- We can test if a random effect variance is significant, but the variance estimates are not likely to have inherent meaning
 - > e.g., "I have a significant fixed linear time effect of $\gamma_{10} = 1.72$, so people increase by 1.72/time on average. I also have a significant random linear time slope variance of $\tau_{U_1}^2 = 0.91$, so people need their own slopes (people change differently). But how much is a variance of 0.91, really?"

• 95% Random Effects Confidence Intervals can tell you

- > Can be calculated for each effect that is random in your model
- Provide range around the fixed effect within which 95% of your sample is predicted to fall, based on your random effect variance:

Random Effect 95% CI = fixed effect $\pm (1.96*\sqrt{\text{Random Variance}})$

Linear Time Slope 95% CI = $\gamma_{10} \pm \left(1.96^* \sqrt{\tau_{U_1}^2}\right) \rightarrow 1.72 \pm \left(1.96^* \sqrt{0.91}\right) = -0.15 \text{ to } 3.59$

 So although people improve on average, individual slopes are predicted to range from -0.15 to 3.59 (so some people may actually decline)

Another Variance Model Effect Size: Intercept/Slope Reliability

• Another measure of effect size for random effects variances is Intercept Reliability (IR) or Slope Reliability (SR)

$$\begin{aligned} & \tau_{U_1}^2 = \text{random slope variance} \\ & \sigma_e^2 = \text{residual variance} \\ & L1n = L1 \text{ sample size per L2 unit} \\ & \sigma_{L1}^2 = \text{variance of L1 predictor} \end{aligned} \qquad \mathbf{SR} = \frac{\tau_{U_1}^2}{\tau_{U_1}^2} + \frac{\sigma_e^2}{L1n * \sigma_{L1}^2} \end{aligned}$$

- IR formula is the same, just replacing σ_{L1}^2 with 1
- SR is known as growth rate reliability in context of time (Willett, 1989)

The Big Picture of Longitudinal Data: Models for the Means for Time

- What kind of change occurs on average over "time"? There are two baseline models to consider:
 - *F* "Empty" → only a fixed intercept (predicts no change)
 - > "Saturated" → all occasion mean differences from time 0 (ANOVA model that uses # fixed effects = n) *** may not be possible in unbalanced data

<u>In-between options:</u> polynomial slopes, piecewise slopes, nonlinear slopes...

Saturated Means:

Reproduces mean at each occasion

Fixed Effects

= # Occasions

Good fit

Name... that... Trajectory!

The Big Picture of Longitudinal Data: Models for the Variance for Time

What is the pattern of variance and covariance over time?

CS and UN are just two of the many, many options available within MLM, including *random effects models* (for change) and *alternative covariance structure models* (for fluctuation).

Summary: Unconditional Longitudinal Models

Model for the Means for Time:

- What kind of **fixed effects of time** are needed to create a function with which to parsimoniously **represent the pattern of saturated means** across time?
 - > Continuous or discontinuous? This choice likely comes from the design!
 - > Polynomials? Pieces? Log time? Truly nonlinear? This comes from the means plot!
 - > Use obtained *p*-values to test significance of fixed effects (Wald test)
 - > Use pseudo-R² values to describe effect size (just for residual if time is WP only)

Model for the Variance for Time (building V):

- What kind of **random effects of time** in G are needed :
 - > To account for **individual differences in each aspect of change**?
 - > To describe any non-constant variance and covariance across occasions?
 - > Do the residuals in R show any covariance after accounting for random effects?
 - > Use REML -2Δ LL tests to test significance of new effects (or ML if big upper-level *N*)
 - > Use random effects CIs and intercept/slope reliability to describe effect size

Summary of Unconditional Time Models

- Each source of correlation or dependency goes into a new variance component (or pile of variance) until each source meets the usual assumptions of GLM: normality, independence, constant variance
- Example two-level longitudinal model:

Next we will add predictors to account for each pile!